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S1) Glossary 

S1.a) Definitions of key terms 

Prescription opioids: Prescription (Rx) opioids are analgesic medications, used primarily to treat pain. 

Examples include natural opiates such as morphine or codeine; semi-synthetic opioids such as 

hydrocodone and oxycodone; and synthetic opioids such as tramadol and licit fentanyl (see also fentanyl 

below). They most commonly come in pill form, though other forms (e.g., liquid, film, etc.) exist as well. 

Prescription opioids are pharmaceutical products, though illicitly manufactured counterfeit prescription 

pills, often containing fentanyl, are a growing concern (see S2.d.i.(2)). We use the term ‘prescription 

opioids’ to refer to any pharmaceutically produced opioid analgesic, regardless of how it is obtained or 

used (e.g., whether prescribed by a medical provider or diverted; whether used to treat pain as prescribed 

or for other purposes). 

Heroin: Heroin is an illicit semi-synthetic opioid that comes in several forms (e.g., black tar, brown or 

powder). It is consumed in several wayst, including oral intake, snorting, smoking, and injection. As an 

illicit drug, the production, distribution, and sale of heroin is illegal. Heroin is often contaminated with 

various adulterants, and increasingly with fentanyl (see below). 

Fentanyl: Fentanyl is a highly potent synthetic opioid with many analogues (e.g., carfentanil, sufentanil, 

etc.). While licit, pharmaceutically produced prescription fentanyls exist, they are relatively uncommon; 

the majority of fentanyl in circulation now is illicitly manufactured fentanyl (IMF). IMF is increasingly 

common in the supply of heroin and other illicit drugs (see S2.d.iii.(3)). Other, non-fentanyl synthetic 

opioids exist as well, though they are generally less potent and far less common in the illicitly-

manufactured fentanyl supply, which includes both basic fentanyl and numerous analogues. In this model, 

we do not distinguish between them, and use the terms ‘synthetic[s]’ and ‘fentanyl’ interchangeably to 

refer to illicitly manufactured fentanyl and its analogues, unless otherwise specified. We specifically use 

the terms ‘prescription synthetics’ or ‘prescription fentanyl’ to refer to the licit form (see prescription 

opioids). 

Misuse:  Prescription opioid misuse includes any use of Rx opioids prescribed for someone else, or use of 

Rx opioids solely ‘for the feeling [they] caused’ (see S3.a.i)). As an umbrella term, ‘misuse’ can also include 

‘low-intensity’ use of heroin that does not rise to the level of use disorder (see below), which we also term 

‘non-disordered heroin use’ (NDHU; see S3.a.iii)). 

Use disorder: Substance use disorder is a clinically-diagnosable psychiatric disorder defined in the DSM-5 

(see S3.a.ii)). Use disorder of varying degrees of severity is defined by endorsement of an increasing 

number of criteria identifying problems associated with drug use. Substance use disorder is associated 

with use of a particular substance; we distinguish between ‘Rx opioid use disorder’ and ‘heroin use 

disorder’ (see S3.a.iv)). 

Remission: Remission is the reduction or disappearance of symptoms of use disorder. An individual who 

formerly qualified as having use disorder and now no longer meets the criteria for use disorder is in 

remission. While the term ‘recovery’ is used more generally to refer to the process of going from use 

disorder to a normal state of functioning and quality of life (see S3.c.v)), we focus on ‘remission’ as defined 

relative to use disorder. Note that remission does not necessarily entail complete abstinence from 

substance use. 
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Medication for Opioid Use Disorder (MOUD): Medication[s] for opioid use disorder [MOUD] refers to 

one or more of a set of three FDA-approved medications used to treat OUD – buprenorphine, methadone, 

and Vivitrol®. Treatment with MOUD is sometimes referred to as medication-assisted treatment (MAT) or 

opioid agonist therapy (OAT). There are many forms of treatment for use disorder, e.g., psychosocial 

therapy, community support groups, 12-step programs, etc. in addition to treatment with MOUD. 

However, our model explicitly represents MOUD but not other forms of treatment (see S2.b)); we 

therefore sometimes use ‘MOUD’ and ‘treatment’ interchangeably in the context of the model to refer to 

treatment involving MOUD. 

S1.b) List of acronyms 

ADF Abuse-deterrent formulation 
Bup / Bupe Buprenorphine 
CDC Centers for Disease Control and Prevention 
CMS Centers for Medicare & Medicaid Services 
DEA Drug Enforcement Administration 
DSM (DSM-IV / DSM-5) Diagnostic and Statistical Manual of Mental Disorders (Fourth / Fifth edition) 
EMS Emergency medical services 
ETC Exogenous trends continue 
FDA Food and Drug Administration 
H Heroin 
HHS Department of Health and Human Services 
HUD Heroin use disorder 
ICD (ICD-9 / ICD-10) International Classification of Diseases (9th / 10th edition) 
IMF Illicitly manufactured fentanyl 
MME Milligrams morphine equivalent 
MMT Methadone maintenance therapy 
MOUD Medications for opioid use disorder 
NASEM National Academies of Sciences, Engineering, and Medicine 
NCHS National Center for Health Statistics 
NDHU Non-disordered heroin use 
NESARC National Epidemiologic Survey on Alcohol and Related Conditions 
NFLIS National Forensic Laboratory Information System 
NSDUH National Survey on Drug Use and Health 
NSDUH RDAS NSDUH Restricted-use Data Analysis System 
N-SSATS National Survey of Substance Abuse Treatment Services 
NVSS National Vital Statistics System 
Nx Naloxone 
OD Overdose 
OSM Opioid systems model 
OUD Opioid use disorder 
Rx Prescription / prescription opioid[s] 
Rx OUD Prescription opioid use disorder 
SAMHSA Substance Abuse and Mental Health Services Administration 
STRIDE System to Retrieve Information from Drug Evidence 
SUD Substance use disorder 
TEDS Treatment Episode Data Set 
Tx Treatment (for use disorder) 
UNODC United Nations Office on Drugs and Crime 
Viv Vivitrol® (naltrexone) 
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S2) Full Model Structure 

S2.a) Overview of structure 

SOURCE is a continuous-time differential equations model, developed using a systems approach that 

emphasises endogenous feedback processes within a broad model boundary that drive changes over 

time. The model simulates the movement of people through different states of opioid use, with 

endogenous influences on initiation and transition rates, as well as more detailed representations of 

prescribing, treatment, and overdose-related processes. Broadly, we distinguish people by severity of 

opioid use (misuse vs. use disorder), as well as by substances used (prescription vs. illicit opioids) (see 

S3.a)). The model is parametrised to represent the opioid-using population in the U.S. at a national level. 

Here we present key equations and structures in each of its sectors, with a complete listing of model 

equations in S7). Data sources for each sector are detailed in S3). 

The model was developed and implemented using Vensim™ simulation software; all model files are 

available in the online repository at https://github.com/FDA/SOURCE. 

S2.b) Model states & transitions 

The opioid system includes people in various stages of use of both prescription opioids (Rx) and illicit 

opioids like heroin (H). For all disorder and remission definitions, we use the Diagnostic and Statistical 

Manual of Mental Disorders, Fifth Edition (DSM-5) criteria (1). Figure S1 provides an overview of the key 

population groups and the transitions among them (for more detailed definitions of these states and 

corresponding data sources, see S3.a)). 

People enter the opioid system by either initiating prescription opioid misuse – with their own 

prescription (initiating Rx misuse own Rx, rMI), or with others’ (initiating Rx misuse diverted, rMD) – or by 

initiating heroin use without prior Rx opioid misuse (initiating heroin no Rx, rND).1 Definitions of opioid 

misuse vary; we follow the 2002-2014 NSDUH definition, to include any use of someone else’s opioid 

prescription, or use of Rx opioids solely ‘for the feeling [they] caused’ (2). 

People who initiate Rx opioid misuse enter the stock of people with Rx misuse (M), while people who 

initiate heroin use without prior Rx misuse enter the stock of people with non-disordered heroin use (N). 

People misusing opioids can also initiate heroin (initiating heroin with Rx misuse, rMN) and enter N. Once 

people transition from M to N, they are no longer distinguished from people who transitioned directly 

into N without first using Rx opioids. People in M and N can quit use in a given year, but also later resume 

use, with net flows (net quitting Rx misuse, rMQ; net quitting NDHU, rNQ) reflecting the combined total of 

quits and resumptions of use (but not new initiations) at any given time.

 
1 The growing presence of illicit fentanyl in the heroin supply complicates identification of ‘heroin use’, with heroin 
almost completely displaced by fentanyl in some parts of the country (206). To our knowledge, few if any people 
self-identify as users of fentanyl as distinct from heroin, and use behaviours are similar in any case. As such we use 
‘heroin’ to refer more accurately to illicit opioids, typically not in pill form, that may contain illicitly manufactured 
fentanyl in addition to or instead of heroin; this includes any powder-form drug that users reasonably think contains 
heroin or fentanyl, as well as non-powder-form (e.g., black tar) heroin. 

https://github.com/FDA/SOURCE
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Figure S1. Overview of model use states (stocks) and transitions (flows). Treatment states are further separated by MOUD type. 
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From Rx misuse, M, people can develop opioid use disorder (OUD) (developing Rx OUD, rMU), thereby 

entering a disordered state involving Rx opioids only (Rx OUD no PY heroin, UR). From the non-disordered 

heroin use state, they can develop an OUD involving heroin (developing HUD no Rx OUD, rNU). For clarity, 

we call this state heroin use disorder or HUD (UH). We also distinguish a third use disorder state, Rx OUD 

with PY heroin (UO), which encompasses people with Rx OUD who have also used heroin in the past year, 

but whose heroin use does not rise to the level of a use disorder. While relatively uncommon, this is an 

important transitional state, which we therefore represent explicitly. People enter this state from UR by 

initiating heroin with Rx OUD (rUO). Once in this state, people can also develop HUD (developing HUD with 

Rx OUD, rOH).2 

Once in the use disorder states (U), people enter remission (… in remission, R(.)) through one of two 

pathways: via remission without use of medications for opioid use disorder (remitting… no MOUD, rUR(.)), 

which could include psychosocial or behavioural treatment or no treatment at all; or through treatment 

with MOUD (… in MOUD Tx, T(.)). Remission occurs after no longer meeting criteria for a DSM-5 disorder 

for at least one year. Once in remission, the probability of relapse (relapsing…, rRU(.)) or remaining in 

remission is the same regardless of the pathway by which remission was achieved, with or without MOUD. 

After some time in the remission states, people transition to a more durable state of stable remission (… 

in stable remission, RS(.)), from which we assume they are no longer at risk of relapse. This transition 

(stabilizing remission…, rRS(.)) takes place after several years (time to stabilize remission, 𝜏𝑅𝑆) in the base 

remission state (see S3.c.v)). 

Treatment engagement can involve any of the three FDA-approved MOUDs: buprenorphine, methadone, 

and Vivitrol (subscripts B, M, V respectively). Treatment engagement flows (rUT(.)) are limited by both 

demand and capacity for each of these medications separately, as explained further in S2.d.ii). Once in 

treatment, people can leave treatment before remitting, thereby returning to use disorder (Tx exit with 

UD, rTU(.)), or leave in remission (Tx exit in remission, rTR(.)). Throughout the use disorder-treatment-

remission chain, stocks are separated by drugs of use (subscripts R, O, H) and by medication used (subscripts 

B, M, V) as appropriate. 

Each stock in the model also has two additional outflows (one for remission states, R(.)) – death from non-

overdose causes (nonOD death, n(.)), as well as opioid-caused overdose death (o(.)) for all states except 

remission. Overdose death rates are significantly impacted by naloxone availability and fentanyl 

penetration into the heroin supply, as detailed in S2.d.iii). 

The vast majority of transition rates or flows in the model are formulated as fractional annual hazard rates 

(𝜌(.)) multiplied by source populations, sometimes further multiplied by additional coefficients, e.g.: 

rMN = (𝜌𝑀𝑁M)𝑆𝑀𝑁𝑃𝑀𝑁𝐴𝑀𝑁 (2. 1) 

Where S(.), P(.), and A(.) are coefficients for various endogenously generated effects, elaborated on in S2.c). 

Different transition rates are subject to different effects and coefficients, while treatment entry/exit and 

overdose death flows are subject to additional influences as well. In most cases, the base rates (𝜌) are 

estimated model parameters; in a few cases they are derived from extant literature. 

 
2 Note that the distinction between use disorder states is based on substance[s] of use and use behaviours, not the 
sources of those substances. See S3.a) for details. 
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For two of the three entry flows into the system (rMD, rND), source populations are not explicitly 

represented in the model. Instead, we estimate an absolute base rate in place of a fractional hazard rate, 

which implicitly accounts for the source population size. For the third entry flow, misuse starting with 

one’s own prescription (rMI), we calculate the number of medical users of Rx opioids (patients with current 

month opioid Rx, mC) as the source population-based on exogenous input data. The patient population is 

large and relatively static compared to the rest of the model, with very short average residence times, so 

it is not explicitly modelled as a stock. Details of this calculation are included in S3.b). 

Table S1. Main states, transitions, and feedback coefficients 

State variables 

M Rx misuse no heroin Prescription opioid misuse 

N Nondisordered heroin use Non-disordered heroin use 

UR Rx OUD no PY heroin not in MOUD 
Tx 

Prescription opioid use disorder, no past-year heroin use 

UO Rx OUD with PY heroin not in MOUD 
Tx 

Prescription opioid use disorder, past-year heroin use 

UH HUD not in MOUD Tx Heroin use disorder 

TR Rx OUD no heroin by MOUD Prescription opioid use disorder, no past-year heroin use, in 
medication for opioid use disorder treatment 

TO Rx OUD with heroin by MOUD Prescription opioid use disorder with past-year heroin use, 
in medication for opioid use disorder treatment 

TH HUD by MOUD HUD in medication for opioid use disorder treatment 

RR Rx OUD no heroin in remission Remission from prescription opioid use disorder, no heroin 
use in the year prior to quitting 

RO Rx OUD with heroin in remission Remission from Rx OUD with heroin use in the year prior to 
quitting 

RH HUD in remission Remission from heroin use disorder 

RSR Rx OUD no heroin in stable 
remission 

> 5 years in remission from prescription opioid use disorder, 
no heroin use in the year prior to quitting 

RSO Rx OUD with heroin in stable 
remission 

> 5 years in remission from Rx OUD with heroin use in the 
year prior to quitting 

RSH HUD in stable remission > 5 years in remission from heroin use disorder 

Transitions 

rMI Initiating Rx misuse own Rx Initiating prescription opioid misuse with one’s own 
prescription opioid 

rMD Initiating Rx misuse diverted Initiating prescription opioid misuse with someone else’s 
prescription opioid 

rND Initiating heroin no Rx Initiating non-disordered heroin use without having 
misused prescription opioids 

rMN Initiating heroin with Rx misuse Initiating non-disordered heroin use after having misused 
prescription opioids 

rMQ Net quitting Rx misuse Quitting prescription opioid misuse 

rNQ Net quitting NDHU Quitting non-disordered heroin use 

rMU Developing Rx OUD Developing opioid use disorder from prescription opioid use 

rNU Developing HUD no Rx OUD Developing opioid use disorder from heroin use without 
having had opioid use disorder from prescription opioid use 

rUO Initiating heroin with Rx OUD Initiating heroin use after having had opioid use disorder 
from prescription opioid use 

rOH Developing HUD with Rx OUD Developing opioid use disorder from heroin after having 
had opioid use disorder from prescription opioid use 
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rUR(.) Remitting… no MOUD Remitting from (…) without medication-based treatment for 
opioid use disorder 

rRU(.) Relapsing…, Returning to opioid use disorder from remission from (…) 

rUT(.) Treatment engagement Engaging in medication-based treatment for opioid use 
disorder from (…) 

rTU(.) Tx exit with UD Exiting medication-based treatment for opioid use disorder 
from (…) with opioid use disorder from (…) 

rTR(.) Tx exit in remission Exiting medication-based treatment for opioid use disorder 
for (…) in remission from (…) 

n(.) NonOD death Dying from causes besides opioid-involved overdose from 
(…) 

o(.) Overdose death Dying from an opioid-involved overdose from (…) 

Feedback effects 

S(.) Social influence coefficient Effect of social influence processes on (…) 

P(.) Perceived risk coefficient Effect of responses to perceived risk on (…) 

A(.) Rx / Heroin / Rx vs. H availability 
coefficient 

Effect of drug availability or comparative availability on (…) 

 

S2.c) Major feedback effects 

The model contains three main sets of endogenous influences (i.e., feedback loops or effects) on transition 

rates (r(.)) between use states, shown in Figure S2: 

1) Social influence reinforcing feedbacks, whereby existing users increase initiation and people with UD 

accelerate disorder development among existing users; 

2) Risk perception balancing feedbacks, whereby opioid overdoses, especially overdose mortality, 

discourage initiation; 

3) Availability balancing feedbacks, whereby the availability of Rx opioids (sometimes compared to heroin) 

fluctuates with the balance of supply and demand, influencing initiation, development of use disorder, 

transitions between Rx opioid and heroin use, and potentially quitting. 

 

Figure S2. Overview of key feedback effects in model 
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These feedback effects are all formulated with the same basic structure: 

𝐶(.) = (𝐷𝐶(.))
𝜀(.)  (2. 2) 

Where 𝐶(.) ∈ {𝑆(.), 𝑃(.), 𝐴(.)} is the social influence coefficient, perceived risk coefficient, or Rx availability / 

H availability / Rx vs. H availability coefficient for a given transition rate respectively; 𝐷𝐶(.) is the relevant 

driver of the effect (relative social influence, relative perceived risk, relative availability); and 𝜀(.) ∈

{𝜓(.), 𝜋(.), 𝛼(.)} is the social influence strength, perceived risk strength, availability strength for that 

particular transition rate. These effect strengths are model parameters, estimated through the model 

estimation process (see S4)). 

Specifics on the drivers of each effect are in the following sections; in all cases, the driver is a time-varying 

quantity normalised by its initial value. Normalising allows coefficients on transition rates to vary with 

changes in their drivers without needing to tease apart baseline transition rates from the endogenous 

effects present at the start of the simulation time period. 

In addition to these three main sets of feedbacks, treatment capacity limitations create a fourth, balancing 

feedback process, whereby as new patients enter treatment, the limited number of available treatment 

spots is filled, reducing or preventing further treatment engagement until existing patients leave (see 

S2.d.ii.(2)). 

S2.c.i) Social influence 

Drug use behaviour has an element of social contagion (3–7). As more people use a substance, its use 

becomes increasingly normalised, and relevant knowledge about its use (e.g., methods of administration, 

sources of supply, etc.) becomes more widespread and accessible (4, 7). Access to the substance in social 

networks grows as people seek the substance or become suppliers to others (especially in the case of 

prescription opioids). Collectively, these processes increase initiation of drug use, creating a self-

reinforcing growth process. (These processes can also work in reverse as use declines.) Similarly, social 

space-driven ratcheting effects can potentially drive increasingly heavy drug use (8, 9), which we 

operationalise as social influence on the UD development process (but see S2.c.iv)). 

We operationalize social influence separately for Rx misuse (rMI, rMD) and heroin initiation (rND, rMN, rUO) 

flows, as well as for initiation vs. development of use disorder (rMU, rNU, rOH). The relative social influence 

(𝐷𝑆(.)) for a given transition depends on the fraction of the total population (see S3.a.viii)) engaging in the 

relevant drug use behaviours. Essentially, 1) only users of a given substance class (Rx vs. heroin) exert 

social influence on initiation or development of use disorder for that substance, and 2) heavier users exert 

influence on lighter users, but not vice-versa, such that people with use disorder affect initiation rates, 

but those without use disorder do not affect use disorder development rates (see Figure S3 for details). 

Note that while network effects on the accessibility of drugs in social networks are captured in this social 

influence process, the aggregate effect of a changing user base on the demand-supply balance is 

represented separately in the availability effects detailed below. 
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Figure S3. Use state populations driving each social influence effect. Initiating Rx misuse from diverted opioids is influenced by 
the fraction of people in the non-disordered heroin use state who also misuse Rx opioids. 

S2.c.ii) Perceived risk 

Perceived risk coefficients  𝑃(.) reflect the deterrent effect that adverse outcomes like death can have on 

drug use behaviour. As overdoses and especially overdose mortality become more common, the 

perceived risk associated with a drug increases, dissuading potential initiates (reducing rMI, rMD, rND, rMN, 

rUO) and possibly encouraging current misusers (but not people with a disorder) to quit use (rMQ, rNQ), 

creating a balancing feedback process (10–12). 

The perceived risk associated with use of a drug (𝐷𝑃𝑅 , 𝐷𝑃𝐻) adjusts with some lag to an underlying 

indicated perceived risk (𝐷𝑃𝑅
∗ , 𝐷𝑃𝐻

∗ ). The lag is asymmetric, i.e., the perceived risk increase time (𝜏𝑃𝐼) is 

significantly shorter than the perceived risk decrease time (𝜏𝑃𝐷), reflecting that deaths, overdoses, etc. 

tend to get more attention than the lack of them, and a dangerous reputation for a drug fades slowly (10, 

11). The indicated perceived risk is operationalized as a weighted sum of the fatal and nonfatal overdoses 

associated with that drug, with a lower relative weight (perceived risk weight NFOD, 𝑤𝜂) given to non-

fatal overdoses in users’ or potential users’ perceptions of risk: 

𝑑𝐷𝑃
𝑑𝑡

=
𝐷𝑃
∗ − 𝐷𝑃
𝜏𝑃

 (2. 3) 

𝐷𝑃 =∑ 𝑜(.) (1 + 𝑤𝜂
𝜂(.)

𝜔(.)
),   (. ) ∈ {𝑅,𝐻}

(.)
 (2. 4) 

Where 𝜂(.) 𝜔(.)⁄  is the ratio of nonfatal to fatal overdoses (see S2.d.iii.(4)). Nonfatal overdoses are far more 

common and receive far less attention (especially for people not already using drugs) than fatal overdoses, 

so we assume a value of 0.1 for 𝑤𝜂, i.e., nonfatal overdoses carry 10% the risk perception impact of fatal 

overdoses. 
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Note that we operationalise perceived risk based on overdoses, i.e., adverse health outcomes, and do not 

incorporate perceived risk of arrest, incarceration, or other legal consequences. Rational choice models 

of illegal behaviour posit that legal consequences could raise the expected costs of drug use and thereby 

exert a deterrent effect (13, 14). However, there is little evidence that people who use or initiate drugs 

behave as rational actors in this way (14–17). Absent such evidence, we have excluded legal risks from 

the risk perception feedback effect. 

S2.c.iii) Availability 

Availability coefficients  𝐴(.) represent the effects of market forces and drug supply on initiation, use 

disorder development, and quit rates. The availability of Rx opioids (Rx availability for misuse, 𝐷𝐴𝑅𝑀) 

affects initiation of Rx misuse and development of Rx OUD (rMD, rMU, rMQ).  

Rx availability is in part a function of demand for Rx opioids, which in turn depends on the number of 

users. It thus exerts a balancing effect whereby more people using reduces the relative availability, in turn 

reducing initiation. Numerous other factors also influence availability, as detailed in S2.d.i). 

Similarly, the availability of heroin (heroin availability index, 𝐷𝐴𝐻) can exert an effect on heroin initiation 

and use disorder development flows (rND, rNU, rNQ), with greater availability facilitating initiation and UD 

development and discouraging quitting. Note, however, that we model heroin availability exogenously 

(see S2.d.i.(3)), so this is not, strictly speaking, a feedback process. 

In addition to the separate availabilities of Rx opioids and heroin, we also consider their comparative 

availability, which affects transitions between Rx and heroin use. For purposes of this comparison, we use 

separate Rx availability constructs for prescription opioid misuse vs. use disorder (𝐷𝐴𝑅𝑀 vs. Rx availability 

for UD, 𝐷𝐴𝑅𝑈), as detailed in S2.d.i.(2) below. The ratio of the respective Rx availability construct to heroin 

availability yields the Rx vs heroin availability index misuse (𝐷𝐴𝐶𝑀), which drives heroin initiation from Rx 

opioid misuse (rMN), or the Rx vs heroin availability index UD (𝐷𝐴𝐶𝑈), which drives initiation or escalation 

of heroin use with Rx OUD (rUO, rOH). 

S2.c.iii.(1) ADF effects on heroin initiation 

In addition to availability effects, we allow for one additional supply-related effect on transitions – an 

effect of abuse-deterrent formulations (ADFs) on heroin initiation with Rx OUD (rUO). Like heroin 

availability effects, this is not strictly speaking a feedback process, but operates in a similar way, driven by 

the ADF fraction of Rx street supply (𝐹𝐴𝑆) (see S2.d.i.(2)). 

ADF prescription opioids are specially formulated to impede physical or chemical modification (e.g., 

crushing or dissolving), which makes them less amenable to non-oral routes of administration (e.g., 

snorting or injecting) (18). In principle, the intended effect of ADFs is to deter escalation from oral to non-

oral misuse of prescription opioids. We do not explicitly distinguish between routes of administration in 

this model, and therefore cannot represent this effect directly. However, non-oral misuse of opioids is a 

marker of OUD severity and a significant predictor of heroin initiation (19, 20). We therefore approximate 

the potential effect of ADFs on reducing non-oral misuse as an effect on the subsequent transition to 

heroin use instead. 
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S2.c.iv) Inclusion & exclusion of specific feedback effects 

The feedback processes explained above are all plausible influences on opioid use transitions, with some 

evidence for their effects. However, the magnitude of each effect and its impact on, e.g., initiation rates 

is difficult to discern with precision from available evidence. For instance, surveys of attitudes toward drug 

use among young people indicate an increase in the perceived risk associated with Rx opioids and heroin 

over the last decade3, but do not associate those changing attitudes with changing likelihoods of initiating 

drug use. We therefore need to ascertain the impact of each process from the aggregate data, through 

model estimation. 

In order to allow the potential impact of each feedback to emerge from the data, we include all the 

aforementioned plausible feedbacks in the model structure during the estimation process. Some of the 

resultant estimated effect strengths show no significant effect for a given feedback on a given rate 

(𝜀(.) ~ 0); those specific feedbacks are thus inactive in the final model. 

 

Figure S4. Feedback effects actively or potentially influencing each transition. Initiating heroin with Rx OUD (rUO) also includes a 
potential effect from ADFs (see S2.c.iii.(1)) 

In some cases, the lack of effect is likely due to under-determination. For instance, the effect of perceived 

risk on initiating and quitting heroin use (rND and rNQ) is similar, and given the absence of any reliable data 

 
3 Specifically, among Monitoring The Future respondents aged 18-30, the fraction perceiving ‘great risk’ of taking narcotics other 

than heroin just once or twice has risen from approximately 40% in 2011 (when the question was first asked) to 46% in 2018 

(207). The fraction reporting the same for trying heroin once or twice has risen from 60% in 1999 to 66% in 2018. In NSDUH, 

among those with an Rx OUD who had not yet used heroin, the fraction perceiving “great risk” in using heroin once or twice rose 

from 70% in 2011 to 81% in 2018 (208). 
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on quit rates, cannot be distinguished. Additional data would allow re-estimation and potentially re-

inclusion of these effect strengths. Figure S4 summarises which feedback effects were allowed to 

potentially operate on which transitions in the estimation process, and in the final model; see also S6.b). 

S2.d) Additional model sectors 

S2.d.i) Opioid supply & availability 

S2.d.i.(1) Prescribing and supply 

Opioid prescribing practices influence both the number of medical users of opioids (mC) who may initiate 

opioid misuse (rMI), and the availability of Rx opioids. 

The number of medical users of Rx opioids (patients with current month opioid Rx, mC) is very large relative 

to other populations in the model, and their average ‘residence time’ fairly short. As such, the population 

of medical users is close to stable at any given time. We therefore represent them not as an explicit state 

variable, but with an analytic approximation: 

mC = mPmNmD (2. 5) 

Where mP is the total number of patients receiving opioid prescription annual, mN is the number of 

prescriptions per person, and mD is the average days per prescription, as detailed in S3.b.i). The number 

of medical users at any given time is thus in effect the product of the rate of people receiving prescriptions 

and their average duration of medical use, per Little’s Law (21). Note that unlike most actual stocks in the 

model, mC does not represent medical use within the past year, but rather current-month ongoing use. 

As such, the transition rates reflecting hazard of misuse initiation from prior medical use (𝜌𝑀𝐼) or overdose 

death for medical users (omc) should be interpreted as hazard rates per person-year of ongoing medical 

use of prescription opioids. 

The Rx supply (qS) represents the total supply that could be made available for potential misuse and can 

be thought of as ‘excess’ pills not used as prescribed within the time period of the prescription, which 

therefore present potential opportunities for misuse. Supply is fundamentally a function of total amount 

of prescription opioid medications dispensed each year, but is potentially influenced by more granular 

prescribing practices. We distinguish several aspects of prescribing that contribute to total amount 

prescribed, analogous to the Kaya identity (22) – in its basic form, total supply in morphine milligrams 

equivalent (MME) is the product of patients receiving prescriptions each year (mP), prescriptions per 

patient (mN), days per prescription (mD), and MME dosage per day (mM): 

qS = mP ×mN ×mD ×mM (2. 6) 

These different aspects of prescribing patterns do not necessarily have equal weight in determining the 

effective supply of Rx opioids, as usage and consumption patterns differ. Simply put, giving twice as many 

people half as many opioids each vs. giving half as many people twice as many prescriptions each vs. giving 

the same number of people half the prescriptions of twice the dosage, and so on, will not necessarily have 

the same effect on supply. To allow for this possibility, we operationalise supply with a number of 

sensitivity of Rx supply exponents (𝑠𝑠(.)), representing the relative contribution of each factor to overall 

supply. Specifically: 

qS = mP
𝑠𝑠𝑝 ×mN

𝑠𝑠𝑛 ×mD
𝑠𝑠𝑑 ×mM

𝑠𝑠𝑚  (2. 7) 
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Where each factor m(.) is normalised to its initial value, and the sensitivity exponents 𝑠𝑠(.) are normalised 

to have a mean of 1. In the absence of more specific evidence, we assume a baseline value of 1 for each 

exponent, giving equal importance to number of patients, number of prescriptions, duration of 

prescriptions, and daily opioid dosage prescribed, though the relative contributions of each factor could 

be adjusted to test different possibilities. In addition, other aspects of prescribing such as the number of 

pills (units) could potentially be incorporated into an expanded formulation for supply. 

S2.d.i.(2) Availability and street supply 

The availability of Rx opioids for potential misuse (Rx availability for misuse, 𝐷𝐴𝑅𝑀) is driven by the ratio 

of Rx supply to Rx demand for misuse (qD): 

𝐷𝐴𝑅𝑀 =
qS + 𝑤𝐶qSC

qD
 (2. 8) 

qD = ∑𝑆(.)qDS(.)
𝑆

, 𝑆 ∈ {M,N,U, T} (2. 9) 

Where the supply side is the sum of Rx supply (qS) and counterfeit supply (qSC), downweighted by some 

counterfeit supply weight (𝑤𝐶). The presence of counterfeit Rx opioids in the street supply is a growing 

concern (23–29), but there are no estimates presently available of their actual prevalence. As such, we 

allow for the possibility of their contributing to supply, potentially downweighted to reflect lower 

desirability, but set their quantity to 0. Rx demand (qp) depends on the sizes of the populations in each 

drug use state and the expected average demand for individuals in that state (see S3.b.ii)). 

The Rx availability for UD (𝐷𝐴𝑅𝑈) likewise depends on Rx supply, potential counterfeit supply, and demand, 

as well as an additional Rx street supply disruption factor (Z): 

𝐷𝐴𝑅𝑈 =
qS + 𝑤𝐶qSC

qD
(1 − Z) = 𝐷𝐴𝑅𝑀(1 − Z) (2. 10) 

Rx street supply disruption (Z) is a state variable reflecting short-term perturbations, beyond the longer-

term dynamics of supply and demand, which affect the street market for Rx opioids: 

𝑑Z

𝑑𝑡
= qZ −

Z

𝜏𝑍
 (2. 11) 

The degree of disruption increases as Rx street supply shocks (qZ) occur. We include a single such shock – 

the 2010 withdrawal of the crushable form of OxyContin from production. OxyContin was by far the single 

most widespread formulation in the prescription opioid street supply at the time (see S3.b.i.(5)), and 

although it was replaced with an abuse-deterrent formulation, the withdrawal of the non-ADF form 

nonetheless represented a substantial disruption of available supply, as the crush-resistant ADF form is 

not a perfect substitute. Disruptions fade as suppliers find new sources and consumers adjust their 

consumption preferences to available alternatives; this is a gradual process, taking time to readjust Rx 

street supply (𝜏𝑍). 

We separate Rx availability for people with misuse vs. use disorder (𝐷𝐴𝑅𝑀 vs. 𝐷𝐴𝑅𝑈) in order to allow these 

street supply disruptions to affect the latter but not the former. People with OUD consume far more 

opioids than those only misusing; they are much more likely to obtain at least some of their drugs from 

the ‘street’ or black market, including purchasing drugs through monetary or equivalent transactions (30, 
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31); and they are more likely to have specific preferences for higher-dosage units or pills they can modify 

for non-oral routes of administration (e.g., crushing or dissolving) (32). As such, they are more vulnerable 

or sensitive to potential disruptions in prescription opioid availability, particularly as compared to the 

availability of alternatives like heroin. 

We calculate the ADF fraction of Rx street supply (𝐹𝐴𝑆) as a function of the ADF fraction of prescribed Rx 

opioids (𝐹𝐴𝑅): 

𝐹𝐴𝑆 = (𝐹𝐴𝑅)𝑠𝑎𝑓  (2. 12) 

Where 𝑠𝑎𝑓 is the ADF substitutability factor, representing the ability of the street supply to preferentially 

take up or avoid ADFs, shifting the composition of the street supply to include disproportionately high or 

low amounts of ADFs compared to what is prescribed (𝐹𝐴𝑅). While we allow for this possibility of 

differential uptake, in the absence of evidence indicating a strong skew one way or the other, we set 𝑠𝑎𝑓=1 

by default, resulting in ADFs being as prevalent in the street supply as in the prescribed supply. We treat 

prescribed ADF supply (𝐹𝐴𝑅) as exogenous (see S3.b.i.(4)). 

S2.d.i.(3) Heroin availability 

As described in S2.c.iii), heroin availability can influence heroin initiation or UD development. In reality, 

heroin availability depends not only on street price but also features such as convenience, reliability, 

purity, and safety of obtaining supply (33). However, to our knowledge, there are no reliable data on 

availability or a suitable proxy thereof, besides price. We therefore operationalise heroin availability as 

simply the inverse of normalised heroin price, as calculated in S3.b.iii). 

There is some evidence that heroin supply chains benefit from learning or improving returns to scale (34, 

35), as producers, traffickers, distributors and dealers improve the efficiency of their practices or 

overwhelm law enforcement efforts. These learning effects may be partly responsible for the decline in 

heroin prices particularly from the mid-2000s onward (36, 37). However, the dynamics of the heroin 

supply chain and market are outside the scope of this model. As such, we do not represent these dynamics 

explicitly, instead treating heroin price as exogenous. 

S2.d.ii) Treatment 

S2.d.ii.(1) Treatment seeking, demand, and engagement 

The process by which people receive addiction treatment can be thought of as a continuum of care (Figure 

S5), with some portion of patients lost to care at each step of the continuum upstream of actual treatment 

engagement (rUT(.)). We represent this continuum with multiple variables, replicated as appropriate for 

each use disorder and/or MOUD type. 
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Figure S5. Treatment engagement as a dual continuum of care. Demand (treatment seekers) and supply (treatment providers) 
need to match in space and time for successful treatment entry, but both providers and seekers face numerous barriers along 
the way. 

We assume that only people with use disorder will engage in MOUD treatment, as those without use 

disorder can simply voluntarily cease their drug use. Not all people with use disorder perceive a need for 

treatment or are interested in MOUDs. The hazard rate for people with use disorder making an effort to 

seek MOUD treatment is the Tx seeking rate… (𝜌𝑇(.)). Treatment-seeking can be thought of as attempting 

to inquire with a provider or program about receiving MOUD, regardless of whether MOUD is ultimately 

received. 

Of those thus seeking treatment, some fraction will fail to receive it due to barriers such as affordability, 

acceptability, or stigma (Tx seeking barrier loss fraction, 𝐹𝐿). Estimates of this loss fraction are detailed in 

S3.c.ii.(2). The remainder are those who will engage in treatment as long as they have access to it (Tx 

demand…, rUT(.)
∗ ): 

rUT(.)
∗ = 𝜌𝑇(.)(1 − 𝐹

𝐿)U(.) (2. 13) 

Treatment demand is then compared with treatment capacity to determine what fraction of demand can 

actually be met. We represent treatment capacity explicitly in the model, detailed below. If capacity is 

insufficient, that means some people will be unable to access treatment despite facing no other barriers 

to engagement: 

rUT(.) = MIN(rUT(.)
∗ , 𝐾𝐼(.)) (2. 14) 
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Where 𝐾𝐼(.) is the Tx intake capacity at any given time, detailed below. 

S2.d.ii.(2) Treatment capacity 

Treatment capacity reflects the total number of patients nationwide who could be actively receiving a 

given treatment at any given time (Tx capacity effective, 𝐾(.)). We calculate 𝐾(.) separately for each MOUD 

(subscripts B, M, V), but not each disorder type. 

The maximum number of people who can be in treatment at a given time is distinct from the maximum 

number who can enter treatment, i.e., the maximum rate of treatment engagement (Tx intake capacity, 

𝐾𝐼(.)); the latter depends on how much of existing capacity is already utilised, the rate of patients leaving 

treatment (rTR(.) and rTU(.)), and the processing time required for someone seeking treatment to start 

receiving it (Tx intake delay, 𝜏𝐼(.)), which for simplicity we estimate at 1 month (0.083 years) for all MOUDs: 

𝐾𝐼(.) = MAX(0,
𝐾(.) − ∑ T𝑢(.)𝑢 + ∑ (rTR𝑢(.) + rTU𝑢(.))𝑢

𝜏𝐼(.)
) , 𝑢 ∈ {R, O, H} (2. 15) 

National-level data on treatment capacity are unfortunately and surprisingly very sparse (see S3.c.iii)). The 

limitations of data availability significantly constrain the level of detail with which we can represent 

treatment capacity, particularly for methadone and Vivitrol treatment. For these two MOUD types, we 

calculate effective treatment capacity 𝐾(.) as a fraction (Tx effective capacity fraction, 𝐹(.)
𝑇 ) of estimated 

nominal or theoretical treatment capacity (𝐾(.)
∗ ): 

𝐾(.) = 𝐾(.)
∗ 𝐹(.)

𝑇 , (. ) ∈ {M, V} (2. 16) 

The effective capacity fraction captures a number of possible reasons why treatment capacity may not be 

fully utilised even in the face of demand, such as imperfect matching between demand and capacity due 

to geographic and temporal heterogeneity, or possibly treatment providers’ and facilities’ preferences for 

maintaining some capacity buffer. 

We represent effective buprenorphine treatment capacity (𝐾𝐵) in more detail, using data on the number 

of providers waivered to prescribe buprenorphine (see S3.c.iii)). While the DATA 2000 buprenorphine 

waiver requirement and its different levels (38) create a certain theoretical maximum number of patients 

who could be receiving buprenorphine nationwide, in practice, providers face numerous other barriers to 

prescribing buprenorphine besides the waiver requirement, and rarely prescribe up to their full waivered 

capacity (39, 40). We do not disaggregate these barriers, but they include factors like low reimbursement, 

lack of training, stigma, or lack of coordinating providers for, e.g., mental health services (41). 

Empirical evidence indicates the average number of buprenorphine patients per provider increased 

initially, but has been decreasing for several years now (see S3.c.iii)). This pattern results from the 

combination of two trends. First, there is an overall trend of diminishing marginal returns to effective 

capacity from additional waivered providers. This diminishing trend interacts with an early increase in 

patients per provider over the first several years after buprenorphine was approved for use in OUD 

treatment. 

The overall diminishing trend likely arises for two main reasons. First, there is self-selection among 

providers in who gets waivered first (42). Those providers who got waivered early on (in the order of 

waiver receipt) were more likely to be those for whom addiction treatment was a major focus of their 
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practice, or those with many patients who showed a need for treatment, and therefore more likely to 

dedicate more time and effort to prescribing. Conversely, those waivered later on are less likely to be 

focused on addiction treatment and less likely to make much time and effort available for buprenorphine 

prescribing. Second, there is some geographic mismatch between supply of waivered providers and 

demand for buprenorphine treatment (43, 44), which tends to worsen with more waivered providers. A 

growing fraction of later-waivered providers are in areas where capacity is plentiful and demand is already 

saturated, even while other locales still have unmet demand. 

The early increases in patients or effective capacity per provider result primarily from exogenous changes 

in the waiver requirement itself. The DATA 2000 waiver allowed providers to increase their prescribing 

limits after a year (38, 45) and a 2005 amendment raised limits for group practice settings (46), allowing 

more capacity to come online gradually. In addition, there was likely some degree of learning as providers 

established and developed the practice-management infrastructure to handle this new treatment option, 

leading to gradual capacity growth. 

To reflect the underlying trend of diminishing returns, we first calculate an indicated effective 

buprenorphine capacity 𝐾𝐵
∗ as the integral of an exponential decay function representing each additional 

provider’s diminishing contribution to capacity (�̂�): 

𝐾𝐵
∗ = ∫�̂� 𝑑𝐵 (2. 17) 

�̂� = �̂�0𝑒
−𝜆𝐵𝐵 (2. 18) 

𝐾𝐵
∗ =

�̂�0𝑒
−𝜆𝐵𝐵 + �̂�0
−𝜆𝐵

 (2. 19) 

Where 𝐵 is the number of waivered Bup providers, �̂�0 is the initial or base effective capacity per provider 

(Bup effective capacity per provider base), and 𝜆𝐵 is a decay constant (Bup effective capacity decay 

constant) indicating the rate at which capacity added per additional provider diminishes. The effect of 

these parameters on the marginal effective capacity per new provider �̂� is shown in Figure S6. 

Rather than represent in detail the policy changes and learning processes driving the early growth in 

patients per provider, we approximate these processes with a multiplier (𝐹𝐾𝐵) that adjusts from 0-100% 

of indicated effective capacity with an exponentially distributed delay: 

𝐾𝐵 = 𝐾𝐵
∗  𝐹𝐾𝐵 (2. 20) 

𝐹𝐾𝐵 = ∫
1

𝜏𝐾𝐵
𝑒
−
𝑡−𝑡𝐵
𝜏𝐾𝐵 𝑑𝑡

𝑡≥𝑡𝐵

= {1 − 𝑒
−
𝑡−𝑡𝐵
𝜏𝐾𝐵 ,                        𝑡 ≥ 𝑡𝐵
0, 𝑡 < 𝑡𝐵

(2. 21) 

Where 𝜏𝐾𝐵 is the Bup effective capacity rampup time and 𝑡𝐵 is the Bup rampup start year in which capacity 

starts to come online. 
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Figure S6. Functional relationship between buprenorphine-waivered providers and marginal effective capacity added per new 

waivered provider. Panels show the effect of varying parameters 𝜆𝐵 and �̂�0 by ±20%. Note that while marginal capacity declines 
rapidly with additional providers, average capacity per provider never declines, as additional marginal providers only ever add 
capacity, never reduce it (see S3.c.iii)). 

S2.d.ii.(3) Treatment effects and outcomes 

Patients in treatment will exit that state after a certain Tx average duration (𝜏𝑇(.)) for each treatment type. 

Weighted averages for each MOUD were derived from an extensive review of literature; see S3.c.iv.(1). 

Following treatment, patients exit to either a remission state (rTR(.)), or back to use disorder (rTU(.)). The 

proportion exiting to remission rather than back to use disorder (Tx success fraction, 𝑝(.)
𝑅 ) is itself a function 

of duration in treatment: 

𝑝(.)
𝑅 =

rTR(.)

rTR(.) + rTU(.)
= 𝑓(𝜏𝑇(.)) (2. 22) 

𝑓(𝜏𝑇) =

{
 
 

 
 (

𝜅𝑅
2

1 + 𝜅𝑅
2)𝑒

(
𝜆𝑅
𝜅𝑅
)(𝜏𝑇−𝑚𝑅)𝑝𝑅𝑀,                        𝜏𝑇 ≤ 𝑚𝑅

(1 − (
1

1 + 𝜅𝑅
2
)𝑒(−𝜆𝑅𝜅𝑅(𝜏𝑇−𝑚𝑅))) 𝑝𝑅𝑀 , 𝜏𝑇 > 𝑚𝑅

  (2. 23) 

The duration-success function, based on an asymmetric Laplace function, creates an asymmetric S-shaped 

curve (see Figure S7), whose shape and scale are based on a combination of expert judgment and existing 

studies (see S3.c.iv.(1)). The Tx success fraction function takes four parameters – the inflection point (𝑚𝑅), 

asymmetry parameter kappa (𝜅𝑅), scale parameter lambda (𝜆𝑅), and the max possible success fraction 

(𝑝𝑅𝑀). 
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Figure S7. Functional relationship between duration of treatment and treatment success fraction. Panels show the effect of 
varying parameters 𝑚𝑅, 𝜅𝑅, 𝜆𝑅 and 𝑝𝑅𝑀 by ±20%. 

Patients in the treatment stocks T(.) include a mix of people in one-year remission and people with ongoing 

use disorder. Transitions in and out of remission while in treatment are not uncommon, but to our 

knowledge there has been no attempt made to quantify these transition rates. For each treatment type, 

therefore, we specify a remission fraction in Tx (𝐹(.)
𝑅 ), which is the average proportion of patients in that 

type of treatment whose use disorder is in remission. The fraction of treatment patients who are not in 

remission count towards the total number of people with use disorder, even though they are not in the 

U(.) stocks. For simplicity, we assume the remission fraction in each treatment type is equal to the current 

success fraction for that type: 

𝐹(.)
𝑅 = 𝑝(.)

𝑅  (2. 24) 

Overdose and non-overdose death rates for treatment stocks (ωT(.) and nT(.)) are weighted by this fraction, 

with the portion of treatment patients in remission experiencing non-overdose deaths at the same rate 

as people in remission stocks (R(.)) rather than use disorder stocks (U(.)), and experiencing no overdose 

deaths. For those in treatment but not yet in remission, being in treatment nonetheless has beneficial 

effects on overdose and non-overdose death rates (effect of MOUD Tx on OD death rate / non-OD death 
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rate, 𝑤(.)
𝑇𝑂 / 𝑤(.)

𝑇𝑁). Magnitudes of these effects are based on extant literature (see S3.c.iv.(2)). The net 

overdose death rate for a given stock of people in treatment is thus: 

ωT(.) = ωU(.)(1 − 𝐹(.)
𝑅 )𝑤(.)

𝑇𝑂 (2. 25) 

While the non-overdose death rate is: 

nT(.) = nU(.)(1 − 𝐹(.)
𝑅 )𝑤(.)

𝑇𝑁 + nR(.)𝐹(.)
𝑅  (2. 26) 

Treatment also reduces opioid consumption for patients in treatment not yet in remission (effect of 

MOUD Tx on Rx consumption, 𝑤(.)
𝑇𝑞

), thereby reducing their influence on demand for Rx opioids: 

qDT(.) = qDU(.)(1 − 𝐹(.)
𝑅 )𝑤(.)

𝑇𝑞
 (2. 27) 

 

S2.d.iii) Overdoses, naloxone, and synthetics 

S2.d.iii.(1) Basic overdose death structure 

The hazard rates of overdose and overdose death (o(.)) differ based on drug use state. Overdose death 

data identify overdoses by the drug[s] involved (see S3.d.i)), but to keep the model estimation tractable, 

we instead allocate overdose deaths to user populations based on the populations’ primary drug of use 

(Rx opioids vs. heroin), with further allocation of synthetic-opioid-involved deaths as detailed in S3.d.ii) 

below. 

Not all overdoses result in death; sometimes death is averted through intervention, and sometimes an 

overdose is inherently less than lethal. For simplicity, we assume that the inherent lethality of an overdose 

and the probability that intervention occurs (or at least is attempted) are independent; many attempted 

interventions occur for overdoses that may not have resulted in death in the first place. In its basic form, 

therefore, we represent the overdose death rate (ω(.)) as: 

ω(.) = 𝛽(.)(1 − 𝑝𝑆(.))𝑝𝐷(.) (2. 28) 

The overall overdose rate (𝛽(.)) is multiplied by the complement of some base probability that overdoses 

are nonlethal, differentiating between Rx opioid and heroin overdoses (base survival probability Rx OD / 

H OD, 𝑝𝑆𝑅 / 𝑝𝑆𝐻), and the probability that some lifesaving intervention does not successfully occur 

(probability OD death not averted Rx / heroin, 𝑝𝐷𝑅 / 𝑝𝐷𝐻). We assume 𝑝𝑆(.) is on average constant for a 

given substance, reflecting its inherent lethality given its usual modes of use; 𝑝𝐷(.) is detailed further 

below. 

Each use state (M, N, UR, UO, UH) has its own base overdose rate parameter 𝛽(.)
∗ , reflecting the combined 

effects of not only the substance involved and its usual modes of use, but also of frequency and patterns 

of use for that use state. For Rx OUD without heroin use (UR), we also estimate a baseline (i.e., pre-illicitly 

manufactured fentanyl) synthetic-involved overdose rate (overdose rate synth baseline, 𝛽𝑅
𝑆). We use the 

synthetic-involved overdose rate to help distinguish the effects of illicitly manufactured fentanyl from that 

of misused prescription fentanyl on overdose deaths, as detailed in S2.d.iii.(3) and S3.d.ii). Base overdose 

rates (𝛽(.)
∗  / 𝛽𝑅

𝑆) and survival probabilities (𝑝𝑆𝑅
∗  / 𝑝𝑆𝐻

∗ ) are estimated model parameters. 
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S2.d.iii.(2) Intervention probability structure & naloxone probabilities 

For a death to not be averted, none of the potential interventions that could prevent it can occur. An 

intervention can only occur if an overdose is first witnessed by someone who could intervene. For 

simplicity, we treat potential interventions as independent conditional on an overdose being witnessed, 

such that 𝑝𝐷(.) is the joint probability that none of them occur: 

𝑝𝐷 = 1 − 𝑝𝑊𝑝𝐼 (2. 29) 

𝑝𝐼 = 1 −∏(1 − 𝑝𝐼𝑗)

𝑗

 (2. 30) 

Here 𝑝𝑊 is the probability OD witnessed and 𝑝𝐼𝑗  is the probability that intervention j successfully occurs, 

given that an overdose is witnessed. The value of 𝑝𝑊 is derived from existing studies; see S3.d.v). 

We represent two types of intervention, each with distinct probabilities of occurrence – bystander 

naloxone administration or calling emergency services. The probability of calling emergency services (𝑝𝐼𝐸) 

is a constant value estimated from literature (see S3.d.v)), which we assume results in a life-saving 

response by emergency medical services (EMS).  

The probability of bystander naloxone administration (probability Nx bystander…, 𝑝𝐼𝐵(.)) depends on the 

amount of naloxone distributed. Specifically, we represent 𝑝𝐼𝐵(.) using as a cumulative exponential 

distribution function of the density of naloxone kits distributed in the population: 

𝑝𝐼𝐵(.) = 1 − 𝑒
𝜆𝑁𝜈(.)  (2. 31) 

Where 𝜆𝑁 is the Nx kit distribution efficiency, reflecting how effectively kits distributed end up in the times 

and places where they are needed, and 𝜈(.) is the number of Nx kits per 100k population for heroin or Rx 

users. 𝜆𝑁 is an estimated parameter; the effect of varying efficiency on 𝑝𝐼𝐵(.) can be seen in Figure S8. 

 

Figure S8. Functional relationship between naloxone kits distributed and probability of naloxone administration in the event of 
witnessed overdose, as dependent on naloxone kit distribution efficiency parameter 𝜆𝑁. 
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Note that 𝜈(.) is normalised per 100,000 total people, rather than just people who use Rx opioids or heroin. 

The distinction between 𝜈𝑅 and 𝜈𝐻 depends on the channels by which naloxone is distributed and the 

populations such distribution focuses on (see S3.d.iv.(3)). The total amount of naloxone distributed is an 

exogenous time-series input, which is apportioned between Rx and heroin users based on an estimated 

parameter, the fraction Nx kits to H users (𝐹𝑁𝐻) (see S3.d.iv.(2)). 

S2.d.iii.(3) Fentanyl effects on OD rates, survival rates, intervention probabilities 

The prevalence of illicitly manufactured fentanyl in the illicit drug supply has increased rapidly since 

around 2013 (47, 48). Fentanyl is far more potent than other Rx opioids or even heroin (49), and has 

substantially affected overdose risks. We operationalise the effects of fentanyl on each stage of the 

overdose process based on its prevalence in the drug supply. Specifically, we drive the underlying growth 

in fentanyl prevalence with exogenous data (fentanyl penetration curve, 𝜙; see S3.d.iii)), representing the 

penetration of illicitly manufactured fentanyl in the heroin supply. 

Note that while there is some evidence of fentanyl in counterfeit prescription opioids, especially on the 

west coast (23, 25, 27, 29), to our knowledge no quantitative data tracking counterfeit prevalence exists. 

We therefore cannot quantitatively account for illicit fentanyl in the Rx supply at this time, nor the effects 

of counterfeit prescription pills containing fentanyl on the street availability of Rx opioids. 

Fentanyl penetration 𝜙 can be thought of as the average probability of exposure to fentanyl for users of 

heroin in any given instance of drug use. We can therefore approximate the average effects of fentanyl 

on overdose rates and survival probabilities as averages weighted by 𝜙𝐻 of their baseline heroin values 

and their corresponding values for fentanyl overdoses: 

𝛽(.) = 𝛽(.)
∗ (1 − 𝜙) + 𝑤𝛽𝐹𝛽(.)

∗ 𝜙 (2. 32) 

𝑝𝑆𝐻 = 𝑝𝑆𝐻
∗ (1 − 𝜙) + 𝑝𝑆𝐹𝜙 (2. 33) 

Where 𝑤𝛽𝐹 is the fentanyl effect on OD rate H max, i.e., how many times more likely overdose events are 

for fentanyl use relative to heroin use, and 𝑝𝑆𝐹 is the base survival probability of a fentanyl-involved 

overdose. These parameters, as well as the fentanyl penetration scaling factor (𝑠𝜙𝐻), are estimated in the 

main model calibration process. 

Comparing overdose death rates against the counterfactual base death rates calculated using the base 

overdose rates and survival probabilities that exclude the effect of fentanyl allows us to attribute a certain 

portion of heroin-user deaths to the effects of illicit fentanyl (overdose death rate synth…, ω(.)𝐹): 

ω(.)𝐹 = 𝛽(.)(1 − 𝑝𝑆𝐻)𝑝𝐷𝐻𝐽 − 𝛽(.)
∗ (1 − 𝑝𝑆𝐻

∗ )𝑝𝐷𝐻 (2. 34) 

We use this calculated death rate to estimate the contribution of illicit fentanyl penetration to overall 

overdose deaths. 

S2.d.iii.(4) Nonfatal overdoses 

We explicitly track nonfatal overdoses for each of the five main use states (M, N, UR, UO, UH). The nonfatal 

overdose rate for each use state (𝜂(.)) is simply the difference between the overdose rate and overdose 

death rate for that state: 

𝜂(.) = 𝛽(.) −ω(.) (2. 35)  
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S3) Data Sources 

S3.a) Main drug use states & transitions 

Most data on drug use states and transitions in the model are drawn from the National Survey on Drug 

Use and Health (NSDUH). NSDUH allows us to distinguish individuals by the substances they have used in 

the past year (Rx opioids vs. heroin), as well as the degree of use associated with each substance (non-

use vs. misuse / non-disordered use vs. use disorder). Both severity and substance of use are important 

distinctions on multiple dimensions – behaviourally, socially, clinically, and in terms of overdose and non-

overdose risks. In particular, there is a clear psychological and social distinction between using 

prescription opioids and heroin (4, 5, 7, 50), as well as clear differences in both overdose risk and 

aggregate patterns of overdose mortality (51), which makes it crucial to distinguish between substances 

of use (but see also S2.b), footnote 1). 

With two substances with three use states each, this creates a 3 x 3 matrix with 9 cells, of which 8 

(excluding non-use of both) collectively map on to the 5 main drug use states in the model (M, N, UR, UO, 

UH; see Figure S9 and Table S8), in combination with the fraction of people in treatment not in remission 

(see S2.d.ii.(3)). Broadly, we aggregated matrix cells based on what substance is associated with the 

highest severity of use disorder and/or risk of overdose. 

 

Figure S9. Prescription opioid / heroin use state matrix with corresponding NSDUH data variables or model states 

Note that we have utilized preliminary NSDUH data for 2020 where available. Due to the COVID-19 

pandemic, NSDUH sample sizes are somewhat smaller for 2020 than previous years; in addition, data from 

the NSDUH Restricted Data Analysis System are not yet available at time of writing. Despite these 
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limitations, we have incorporated these data to better reflect the most up-to-date trends and the effects 

of the COVID-19 pandemic on the opioid crisis (see also S6.d)). 

S3.a.i) Prescription opioid misuse 

We define Rx opioid misuse as including any use of someone else’s opioid prescription or use of Rx opioids 

solely “for the feeling [they] caused”. This definition matches the pre-2015 question wording in NSDUH 

(2). 

Our definition of Rx opioid misuse excludes people sometimes called “medical misusers”, i.e., people who 

1) used Rx opioids that were prescribed to them; 2) used them in ways other than as directed by their 

medical care providers; but 3) did so to treat pain (which is the intended therapeutic use of Rx opioids) 

and not for any other reason. This can include, for instance, using Rx opioids prescribed to oneself, in 

therapeutic doses, to treat pain, of the same kind for which they were originally prescribed, but without 

first consulting a medical professional regarding the repeat use. 

S3.a.i.(1) Adjustments for NSDUH question change 

From 2015 onward, NSDUH defines misuse more broadly, in a way that includes “medical misusers” or 

more specifically anyone who has used Rx opioids in any way not as directed by their medical care 

providers (2). 

We account for this definitional change, which SAMHSA considers a trend break (2), using a fixed effect 

for the percentage increase in reporting of misuse due to the definitional change (NSDUH misuse 

redefinition fixed effect, 𝐹𝑀). This fixed effect parameter is estimated as part of the model calibration 

process (see S4)). From 2015 onward, we adjust the time series on Rx misuse and misuse initiation (see 

S3.a.v)) accordingly: 

M𝑎𝑑𝑗
𝑦

=
M𝑦

1 + 𝐹𝑀
 (3. 1) 

rMI𝑎𝑑𝑗
𝑦

=
rMI
𝑦

1 + 𝐹𝑀
 (3. 2) 

This adjustment reduces the number of people misusing after 2015 by approximately a third. 

S3.a.ii) Prescription opioid use disorder 

We define use disorder states according the DSM-5 criteria; however, NSDUH does not use the DSM-5 

definition. Instead, we approximate the DSM-5 definition from NSDUH using the count of DSM-IV criteria 

for substance abuse or substance dependence that they meet. We ignore reported legal problems, which 

is no longer a DSM-5 criterion for disorder, and we are unable to include craving, which was added to the 

DSM-5 criteria but is not queried in NSDUH (see Table S2) (52). Note that our use of NSDUH’s DSM-IV 

criteria to approximate DSM-5 criteria differs from how NSDUH commonly reports ‘use disorder’ – NSDUH 

typically reports the union of DSM-IV substance abuse and substance dependence as ‘use disorder’, even 

though that more accurately reflects DSM-IV diagnoses rather than DSM-5 use disorder. This difference 

results in our calculated estimates for use disorder, particularly Rx OUD, being higher than what NSDUH 

reports as “use disorder.” 
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We separate people with Rx OUD who have not used heroin in the past year vs. those who have (UR vs. 

UO, see Figure S9). We adjust all NSDUH heroin-use estimates, including the count of people with Rx OUD 

with past-year heroin use (UO
𝑦

), to account for systematic under-reporting (see S3.a.vii)). 

The NSDUH counts of people with past-year use disorder also include that fraction of people in treatment 

states in the model (T(.)) who are not yet in remission, who by definition have qualified for use disorder 

within the past year (see Table S8). 

Table S2. DSM-5 criteria for substance use disorder, compared to DSM-IV substance abuse & substance dependence criteria 

DSM-IV Diagnostic criterion 

* Craving or a strong desire to use opioids 

A Recurrent opioid use resulting in failure to fulfill major role obligations at work, school, or home 

A Continued opioid use despite having persistent or recurring social or interpersonal problems 
caused or exacerbated by the effects of opioids 

A Recurrent opioid use in situations in which it is physically hazardous 

D Opioids are often taken in larger amounts or over a longer period of time than intended 

D There is a persistent desire or unsuccessful efforts to cut down or control opioid use 

D A great deal of time is spent in activities necessary to obtain the opioid, use the opioid, or recover 
from its effects 

D Important social, occupational or recreational activities are given up or reduced because of opioid 
use 

D Continued use despite knowledge of having a persistent or recurrent physical or psychological 
problem that is likely to have been caused or exacerbated by opioids. 

D *Tolerance, as defined by either of the following: (a) a need for markedly increased amounts of 
opioids to achieve intoxication or desired effect (b) markedly diminished effect with continued use 
of the same amount of an opioid 

D *Withdrawal, as manifested by either of the following: (a) the characteristic opioid withdrawal 
syndrome (b) the same (or a closely related) substance are taken to relieve or avoid withdrawal 
symptoms 

DSM-IV column indicates DSM-IV diagnosis corresponding to DSM-5 criteria: 
A = substance abuse; 1 or more needed; 4th criterion (legal problems) removed from DSM-5 
D = substance dependence; 3 or more needed in 12-month period 
* Craving is a DSM-5 criterion not included in DSM-IV diagnoses and not queried in NSDUH 
Source: (52) 
 

 

S3.a.iii) Non-disordered heroin use 

Approximately one-quarter of the people who report heroin use in the past year in NSDUH do not meet 

use disorder criteria for their heroin use. Anyone who reports past-year heroin use in NSDUH who does 

not qualify for HUD is counted either as having non-disordered heroin use (N𝑦) if they do not qualify for 

Rx OUD, or Rx OUD with past-year heroin use (UO
𝑦

) if they do (see Figure S1). We adjust all NSDUH heroin-

use estimates, including the count of people with NDHU (N𝑦), to account for systematic under-reporting 

(see S3.a.vii)). 

S3.a.iv) Heroin use disorder 

As with Rx OUD, we approximate the DSM-5 use disorder definition using NSDUH criteria (see above). 

Note that substance use disorder associated with Rx opioid use vs. heroin use are sometimes both 
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collectively referred to as ‘opioid use disorder’, since heroin is an opioid substance. However, NSDUH 

queries each UD criterion for each substance separately, allowing us to identify whether UD is associated 

with use of Rx opioids, heroin, or both. For clarity, we use ‘Rx OUD’ to refer to UD associated with use of 

Rx opioids, and ‘HUD’ to refer to UD associated with use of heroin or both. 

We adjust all NSDUH heroin-use estimates, including the count of people with HUD (UH
𝑦

), to account for 

systematic under-reporting (see S3.a.vii)). 

The NSDUH counts of people with past-year use disorder also include that fraction of people in treatment 

states in the model (T(.)) who are not yet in remission, who by definition have qualified for use disorder 

within the past year (see Table S8). 

S3.a.iv.(1) Caveat regarding HUD data 

NSDUH’s 2018 data on HUD prevalence and heroin use initiation show a downward trend from previous 

years, and 2019 data continue this downward trend, showing a sharp decline. The drop is large and rapid 

enough that several subject-matter experts expressed concern about the accuracy of the data. Changes 

in overdose mortality and MOUD treatment engagement are insufficient to explain the drop, but without 

specific data on remission (and relapse), we cannot conclusively demonstrate the physical impossibility or 

inconsistency of the reported numbers. 

In consultation with our subject-matter experts, we have considered several plausible explanations for 

the decline – increased under-reporting due to growing fear or stigma, possibly associated with fentanyl; 

increasing self-identification as a fentanyl rather than heroin user (e.g., in regions where fentanyl has 

almost completely displaced heroin); and decreasing relapse due to ‘older’ cohorts of former heroin users 

attaining an increasingly durable state of remission. We found no evidence for the first two of these 

explanations, and our subject-matter expert team considered them less likely than there being issues with 

the NSDUH data. 

Increasing durable or sustained remission was the only other explanation supported by our subject-matter 

experts as well as existing literature. We modified the model’s remission structure (see S2.b) and S3.c.v)) 

to more accurately reflect this effect, which improved model performance but was insufficient to produce 

the observed decline. 

We have queried SAMHSA directly about the 2019 HUD and heroin initiation data, and they report that 

the 2019 data are in no way anomalous as no methodological changes occurred that may account for the 

difference. 

With no further explanation or justifiable alternative, we have estimated the model on the assumption 

that the NSDUH 2019 HUD and heroin initiation data are no less accurate than in other years. This has 

several implications for the model’s estimates, behaviour and projections. 

Most importantly, the rapid drop in initiation indicates the risk response feedback (see S2.c.ii)) is very 

strong, exerting a dominant effect on the system in the last few years as the sharp rise in overdose 

mortality due to illicit synthetics deters new heroin initiates. Similarly, the fall in HUD prevalence indicates 

relatively high rates of remission vs. relapse, absent new initiations or use disorder development. With 

sustained high overdose mortality, this strong behavioural response results in a substantial projected 

decline in opioid use and mortality over the next decade (see S5.c)). 
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If the 2019 heroin use data turn out to be, for whatever reason, a substantial under-estimate, then our 

model will have over-estimated the strength of this risk response feedback, as well as rates of HUD 

remission vs. relapse. A weaker risk response and lower remission / higher relapse rates will result in 

persistently higher levels of opioid use and overdose mortality than we are currently projecting, with a 

much slower decline. 

S3.a.v) Initiating prescription opioid misuse 

We derive data on annual initiation rates of Rx opioid use from NSDUH’s Restricted Data Analysis System 

(RDAS), which allows identification of past-year initiates. The data do not directly distinguish between 

initiation of use with vs. without a prescription (rMI vs. rMD). To make that distinction, we use the fraction 

of past-year initiates who report that the source of Rx opioids for their most recent instance of misuse 

was one or more of their own prescriptions (vs. other sources), averaged over time, as a proxy for the 

fraction initiating misuse from a prescription. Due to the trend break in misuse reporting in 2015, we use 

separate fractions before 2015 and from 2015 onward. 

S3.a.vi) Initiating heroin use 

We derive data on annual initiation rates of heroin use from NSDUH’s Restricted Data Analysis System 

(RDAS) as well, using it to identify whether individuals are initiating heroin with no past-year Rx opioid use 

(rND), with past-year Rx opioid misuse (rMN), or with past-year Rx OUD (rUO). These data were then adjusted 

to address under-reporting, as outlined below. 

S3.a.vii) Heroin use adjustments 

NSDUH estimates of the number of people who use heroin are notoriously low (53–58). This under-

reporting is due in part to exclusion of incarcerated populations where heroin use is disproportionately 

common, and in part to the strong stigma associated with heroin use. To correct for this under-estimation, 

we adjust all NSDUH data on prevalence and initiation of heroin use (N𝑦, UO
𝑦

, UH
𝑦

, rND
𝑦

, rMN
𝑦

,  rUO
𝑦

) as 

follows. 

No adjustment to empirical data should ever be undertaken lightly. We make this change noting that 1) 

the systematic problems with the data are well-known, and 2) the alternative of not adjusting the data 

would be worse, forcing skewed estimates of various parameters and creating errors that would 

propagate throughout the model (due to its enforced internal consistency and conservation of matter). 

Our adjustments are based on extensive literature review as well as discussions with subject matter 

experts. 

We base the adjustment on estimates of chronic heroin users (CHU) from the RAND Corporation report 

“What America's Users Spend on Illegal Drugs, 2006-2016” (56, 59). The report estimates number of CHUs 

for 2006-2016. We compare the RAND CHU population against the total NSDUH reported population of 

heroin users year by year (N𝑡
𝑦
+ UO𝑡

𝑦
+ UH𝑡

𝑦
), yielding an average ratio of 3.11. We then multiply each 

NSDUH heroin use population and initiation flow by this ratio. Note that the actual ratios of RAND to 

corresponding NSDUH estimates in the data decline over time, but for simplicity, we use a single average 

figure for each population group, meaning the temporal trends in the data are driven by NSDUH. This may 

result in some underestimation of heroin users in our adjusted data in earlier years, and some 

overestimation in later years. 
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S3.a.viii) Total population 

As great a problem as the opioid crisis may be, the total U.S. population is orders of magnitude larger. We 

therefore represent total population – or more accurately, the NSDUH survey population of non-

institutionalised individuals aged 12 and older – as exogenous. 

Total population figures for 1999-2020 are taken directly from NSDUH data. Projected total population 

for 2020-2032 is calculated using the ratio of the 2020 NSDUH population to 2020 population projected 

by the U.S. Census. This ratio (approx. 83%) is applied to U.S. Census projected population for 2020-2032 

to yield a projection of the NSDUH population: 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑁𝑆𝐷𝑈𝐻 𝑝𝑜𝑝.=
2019 𝑁𝑆𝐷𝑈𝐻 𝑝𝑜𝑝.

2019 𝑈𝑆 𝐶𝑒𝑛𝑠𝑢𝑠 𝑝𝑜𝑝.
× 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑈𝑆 𝐶𝑒𝑛𝑠𝑢𝑠 𝑝𝑜𝑝. (3. 3) 

 

S3.b) Opioid prescribing, supply, and price data 

S3.b.i) Prescription opioid supply 

We draw most data regarding prescribing patterns, as detailed in S2.d.i.(1), from several proprietary IQVIA 

datasets – the National Sales Perspective®(NSP), National Prescription Audit® (NPA), and Total Patient 

Tracker® (TPT). NPA and TPT are national-level projected services designed to estimate the total number 

of prescriptions dispensed and unique (non-duplicated) patients receiving prescriptions within a specified 

timeframe respectively, across all drugs and therapeutic classes. NPA captures prescriptions dispensed in 

the outpatient setting at U.S. retail and mail-order pharmacies, as well as pharmacies that dispense to 

long-term care facilities, while TPT projects patient counts based on prescriptions dispensed from U.S. 

retail pharmacies. TPT uses prescription activity as part of their projections and integrates information 

from pharmacies to eliminate duplicate patients. As of 2019, IQVIA data captures 92% of all dispensed 

prescriptions in the U.S. from a sample of about 49,900 retail pharmacies, for a total of over 3.5 billion 

transactions annually. The prescription coverage and sample size have varied across the time period in 

our analyses. NPA and TPT are projected to the known universe of retail pharmacies. 

NSP estimates the volume of prescription drug products moving from distributors and manufacturers into 

various retail and non-retail outlets, in terms of sales dollars and product quantities. Retail outlets include 

various pharmacy settings, including mail-order; non-retail outlets include clinics, hospitals, long-term 

care facilities, and other such settings. NSP captures 86% of sales in the retail channel and 97% of the sales 

in the non-retail channel, or about 90% of the U.S. pharmaceutical market in total. It includes sales from 

388 indirect suppliers and direct sales reported from around 100 manufacturers, totaling about 1.5 billion 

transactions per year. 

S3.b.i.(1) Total prescriptions and MMEs 

For the total number of opioid analgesic prescriptions dispensed annually (total prescription opioid Rx), 

we use IQVIA NPA® data on the total number of prescriptions for all opioid analgesic products dispensed 

from U.S. outpatient pharmacies (retail and mail-order). 

We calculate the total annual MMEs (total Rx MME prescribed) by multiplying the opioid units (e.g., 

tablets, patches, liquid volume) reported in IQVIA NPA by the milligram strength per unit and by the 

appropriate MME conversion factors as shown in Table S3. 
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Table S3. MME conversion factors for different opioid substances 

Opioid 

Dosage 

Formulation 

MME 

conversion 

factor Opioid 

Dosage 

Formulation 

MME 

conversion 

factor 

Benzhydrocodone Oral solid/liquid 1.22 Meperidine Injectable 0.3 

Buprenorphine Injectable 100 Meperidine Oral solid/liquid 0.1 

Buprenorphine Oral solid/liquid 0.03 Methadone Injectable 4.29 

Buprenorphine Patch 12.6 Methadone Oral solid/liquid 3 

Butorphanol Injectable 15 Morphine Injectable 3 

Butorphanol Nasal spray 7 Morphine Oral solid/liquid 1 

Codeine Oral solid/liquid 0.15 Morphine Rectal 1 

Dihydrocodeine Oral solid/liquid 0.25 Nalbuphine Injectable 3 

Fentanyl Injectable 150 Opium Oral solid/liquid 1 

Fentanyl Oral solid/liquid 0.13 Oxycodone Oral solid/liquid 1.5 

Fentanyl Patch 7.2 Oxycodone (Xtampza) Oral solid/liquid 1.67 

Fentanyl (Lazanda) Nasal spray 1.28 Oxymorphone Injectable 30 

Fentanyl (Subsys) Nasal spray 0.18 Oxymorphone Oral solid/liquid 3 

Hydrocodone Oral solid/liquid 1 Pentazocine Injectable 1 

Hydromorphone Injectable 20 Pentazocine Oral solid/liquid 0.37 

Hydromorphone Oral solid/liquid 4 Tapentadol Oral solid/liquid 0.4 

Hydromorphone Rectal 4 Tramadol Oral solid/liquid 0.1 

Levorphanol Oral solid/liquid 11    

Sources: (107–110) 

 

Note that neither total prescriptions nor total MMEs is used directly in the model; instead they are 

combined to yield the avg MME per opioid Rx, which together with the average days per prescription 

(mD,.see S2.d.i.(1)) is used to calculate the average MME per day (mM). They are also used to derive a 

number of other prescribing-related time series as explained below. 

There are recognized limitations with using MME as a standardising conversion factor for quantifying the 

potency of opioids across different opioid moieties. MME conversion cannot fully account for 

pharmacologic variability due to moiety, route of administration, and patient characteristics; furthermore, 

conversion factors are inconsistently applied and interpreted in clinical practice and in research (60, 61). 

These limitations likely mean that some moieties are under- or over-represented in total calculations of 

the Rx supply. 

However, in no place does SOURCE directly make use of calculated MMEs or MME per prescription and 

daily dosage values. Instead, these values are either normalised to their initial values (see S2.c)) or used 

to calculate fractions (see S3.b.i.(4)), and it is the temporal trend in these normalised or fractional values 

that drives changes in the model. As such, barring extreme shifts in the composition of overall opioid 

prescribing by opioid moiety, the exact MME conversion factors used in calculating total MMEs makes 

little difference to the overall temporal trends in prescribing and hence to the behaviour of the rest of the 

model. The model also does not rely on MME to estimate overdose or other hazard rates. 
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S3.b.i.(2) Total patients receiving prescriptions 

For the total number of patients receiving opioid prescription annual each year (mP) we use IQVIA TPT® 

data on the total unique patients receiving opioid analgesic prescriptions within each year from 2002-

2020. Prior to this period, we calculate the value for mPusing simple linear extrapolation of the TPT® 

annual patient totals. 

S3.b.i.(3) Prescriptions per person and average duration 

For the average number of prescriptions per person (mN) over time, we use data from IQVIA TPT® and 

NPA®, described above. The TPT® data provide estimates of total unique patients receiving opioid 

analgesic prescriptions within each year from 2002-2020, while the NPA® data provide estimates of total 

opioid analgesic prescriptions dispensed each year from 1999-2020 (see above). We calculate 

prescriptions per person (mN) over time using the ratio of total prescriptions in NPA® to total patients in 

TPT® each year. 

To calculate the average days per prescription (mD), we first estimate the average duration of medical 

opioid use (𝜏𝑀) by comparing IQVIA TPT® data on unique patients receiving opioid analgesic prescriptions 

at different levels of temporal resolution. Specifically, we use the ratio of unique patients each month 

(patients with current month opioid Rx) reported in TPT® to unique patients each year as a proxy for 

duration of medical use. On average, at any given time, the fraction of all patients receiving prescriptions 

within the year whose prescriptions are currently active will be equivalent to the fraction of the year for 

which, on average, a patient’s prescriptions are active. This allows the monthly to annual unique patients 

ratio to serve as a proxy for duration of active (or more accurately, current-month) medical use. 

We then compare the prescriptions per person (mN) with this estimate of average duration of medical 

opioid use (𝜏𝑀, converted to days) to yield the average days per prescription (mD). 

S3.b.i.(4) ADF fraction of prescribed supply 

We calculate a time series for the ADF fraction of prescribed Rx opioids (𝐹𝐴𝑅) (see S2.d.i.(2)) using the 

same IQVIA NPA data and MME conversion factors used to calculate total annual MMEs above (Table S3). 

We use a list of all FDA-approved ADF opioids currently marketed in the United States (see Table S4) to 

identify the total annual MMEs prescribed for ADF products and divide that by total Rx MME prescribed 

to arrive at the ADF fraction (of MMEs prescribed) for each year. 

Table S4. FDA-approved abuse-deterrent formulation opioids currently marketed in the U.S.* 

FDA-approved ADF opioids 

Product name 
Active 

ingredient 
Year 

approved Product name 
Active 

ingredient 
Year 

approved 

Arymo™ ER Morphine 2017 OxyContin® Oxycodone 2010 

Embeda® Morphine 2009 RoxyBond™ Oxycodone 2017 

Hysingla® ER Hydrocodone 2014 Xtampza® ER Oxycodone 2016 

MorphaBond ER™ Morphine 2015    

* Three other abuse-deterrent formulations are approved but not marketed in the U.S., and are therefore 
excluded from this analysis: Targiniq™ ER, Troxyca® ER, and Vantrela™ ER 
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S3.b.i.(5) OxyContin withdrawal street supply shock 

We include a single historical Rx street supply shock (see S2.d.i.(2)), representing the August 2010 

withdrawal of non-ADF OxyContin. To estimate the magnitude of this shock, in terms of the proportion of 

the street supply impacted, we used StreetRx, a crowdsourced database of street prices paid for illicit 

substances. StreetRx reports include information on substance, quantity, and price. We set the magnitude 

of the shock at 0.45 (where 100% of street supply = 1), equal to the fraction of total MMEs reported in 

StreetRx for 2010 consisting specifically of OxyContin (excluding other oxycodone). OxyContin MMEs are 

calculated based on conversion factors in Table S3. 

S3.b.ii) Prescription opioid demand 

To calculate the Rx demand for misuse (qD), we use the number of people in each opioid use state 

multiplied by the per-person demand for opioid use for that use state, expressed in MMEs per year. We 

calculate per-person demand based on NSDUH data on average number of days of use per year, rounded 

to the nearest 10 days, reported over the 2010-2018 period: 50 days for M, 110 days for UR, 180days for 

UO, 100 days for N, and 120 days for UH. (The latter two categories are modified by the average fraction 

over 2010-2018 of people in those states who also use Rx opioids.) Note that these reported days of use 

are likely underestimates, particularly for the UR and UO groups. We multiply the days of use by assumed 

MME per day values of 40 MME/day for non-disordered groups (M and N), and 100 MME/day for use 

disorder (UR, UO, UH). We believe these are conservative estimates, and actual use quantities are likely 

higher. 

S3.b.iii) Heroin price 

We calculate a normalised index of heroin price using data from two sources – U.S. wholesale prices for 

heroin from the UN Office on Drugs and Crime (62), and heroin retail prices from the DEA System to 

Retrieve Information from Drug Evidence (STRIDE), as used in (63). These two sources cover different 

years (2007-2018 vs. 2002-2011, 2013 & 2015 respectively). To combine them, we first normalised each 

price series to its 2007 value. We combined the two 2007-normalised indices, taking the mean in years 

where both were available and using whichever was available otherwise. Finally, we re-normalised the 

combined index to 1999, the year of model initialisation. 

S3.c) Treatment & remission 

SOURCE explicitly represents use of the three FDA-approved MOUDs – buprenorphine, methadone, and 

Vivitrol. Other forms of treatment (e.g., psychosocial, mutual aid group, etc.) are not explicitly 

represented; their effects are incorporated into non-MOUD remission pathways (rUR(.)). Note that in 

contrast to drug use states, which represent past-year use, the treatment states in the model represent 

current, ongoing treatment receipt. 

S3.c.i) Treatment receipt 

We represent buprenorphine treatment receipt using IQVIA Total Patient Tracker® (TPT) data (see also 

S3.b.i)), which reports estimated total unique patients receiving buprenorphine within each month. This 

total includes only people receiving buprenorphine products designated for use as opioid antagonists (i.e., 

as MOUD) and not for pain. We use this current-month patient total as a proxy for the total patients 

receiving buprenorphine at any point in time (TB
𝑦

). 
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Methadone maintenance treatment (MMT) receipt (TM
𝑦

) is estimated using N-SSATS point-in-time counts 

as of March 31 for each year from 1999-2020, with data interpolated for missing years. 

For Vivitrol receipt, we use IQVIA National Sales Perspective®, which reports annual injections of Vivitrol. 

Because Vivitrol can also be used for alcohol use disorder (AUD), and IQVIA does not report the indication 

for use, we subtracted the average number of injections from 2006-2010 (prior to Vivitrol’s approval for 

OUD treatment) from subsequent years, to arrive at estimates for Vivitrol injections for OUD. These 

estimates were then divided by 12, as injections are usually given monthly, to arrive at point-in-time 

counts for patients receiving Vivitrol (TV
𝑦

). 

S3.c.ii) Treatment-seeking and barriers 

S3.c.ii.(1) Treatment seeking rates 

We estimate a single base treatment-seeking rate in the model, which is the total treatment-seeking rate 

across MOUD types for people with Rx OUD without heroin use (𝜌𝑇𝑅 = 𝜌𝑇𝑅𝐵 + 𝜌𝑇𝑅𝑀 + 𝜌𝑇𝑅𝑉), as part of 

the model calibration process. This base rate provides an anchor for all other treatment-seeking rates in 

the model. 

In the absence of more detailed data to distinguish the states, we assume people with Rx OUD with heroin 

use seek treatment at the same rate as those without heroin use (𝜌𝑇𝑂(.) = 𝜌𝑇𝑅(.)). Most literature on 

treatment does not distinguish between these two groups; indeed, most literature on treatment focuses 

on people with HUD rather than Rx OUD. 

We express total HUD treatment seeking rate (𝜌𝑇𝐻) as a multiple of the base rate: 

𝜌𝑇𝐻 = 𝑚𝑇𝑅𝐻𝜌𝑇𝑅 (3. 4) 

Where 𝑚𝑇𝑅𝐻 is the Tx seeking rate HUD relative to Rx OUD no H. We set 𝑚𝑇𝑅𝐻 = 4.84, based on 2020 

NSDUH data on the fraction of people with HUD reporting receipt of MOUD treatment compared to the 

equivalent fraction for people with Rx OUD (64).4 

Treatment-seeking rates for each MOUD type are expressed as fractional multipliers of the total base rate, 

differing for Rx OUD vs. HUD: 

𝜌𝑇𝑖𝑗 = 𝑚𝑇𝑖𝑗𝜌𝑇𝑖, 𝑖 ∈ {R, H}, 𝑗 ∈ {B,M, V} (3. 5) 

The values of each of these fractions are based on expert estimates on relative patient preferences for 

each treatment type (see Table S5). For instance, while buprenorphine treatment is generally the most 

popular (65, 66), people with HUD are much more likely to seek MMT than people with Rx OUD. 

Table S5. Rates of treatment-seeking by use disorder and MOUD type, relative to total Tx-seeking rate for OUD (rUTR) 

 Total MOUD Tx-
seeking rate Buprenorphine Methadone Vivitrol 

Opioid use disorder 0 0.625 0.05625 0.31875 

Heroin use disorder 4.84 2.6637 1.743 0.4359 

 
4 2019 is the first year that NSDUH queries MOUD receipt specifically, as opposed to general treatment receipt. The 
calculated ratio of ~5 nonetheless accords with with consistent data from both NSDUH and TEDS indicating people 
with HUD seek or receive treatment at far higher rates than people with Rx OUD. 
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Note that we do not account for people switching between medications within a given treatment episode, 

though it is possible for someone who receives one MOUD during one treatment episode to subsequently 

receive a different one later. We also assume patients seek a specific MOUD during a given treatment-

seeking attempt, as the three available medications are generally viewed as quite different. 

S3.c.ii.(2) Barriers to treatment receipt 

We calculate the Tx seeking barrier loss fraction (𝐹𝐿), i.e., the fraction of people seeking treatment who 

fail due to barriers such as affordability, acceptability, or stigma, based on data from NSDUH. Specifically, 

for people who make an effort to get treatment but do not receive it, NSDUH offers 15 potential reasons 

for non-receipt. We divide these reasons into three categories (see Table S6) – 1) affordability, e.g., lack 

of health insurance or insurance that doesn’t cover treatment; 2) accessibility, e.g., lack of transportation 

to get to a treatment provider or providers not having space available for new patients; and 3) stigma and 

other non-affordability issues, e.g., fear of potential negative opinions or belief that treatment will not 

help. 

Since the model explicitly represents treatment capacity constraints, which captures the loss of potential 

treatment patients due to accessibility reasons, we do not include those people who report non-receipt 

exclusively for accessibility reasons in 𝐹𝐿. Instead, we include only those who report at least one of 

affordability and stigma or other non-affordability issues as reasons for treatment non-receipt: 

𝐹𝐿 =
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑠𝑒𝑒𝑘𝑒𝑟𝑠 𝑛𝑜𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑓𝑓𝑜𝑟𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑟 𝑠𝑡𝑖𝑔𝑚𝑎 𝑏𝑎𝑟𝑟𝑖𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑠𝑒𝑒𝑘𝑒𝑟𝑠, 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑜𝑟 𝑛𝑜𝑡
 (3. 6) 

 

Table S6. Barriers to treatment engagement queried in NSDUH (with variable codes) and corresponding overarching categories 
used in model 

Barrier to treatment engagement Variable code Category 

Need treatment but no health coverage or cannot pay NDTRNNOCOV  Affordability 
 Need treatment but insurance doesn’t cover substance use treatment NDTRNNOTPY  

Need treatment but transportation posed a difficulty NDTRNTSPHR  Accessibility 
 Need treatment but the type desired is not available NDTRNWANTD  

Need treatment but the treatment centers had no open spaces NDTRNPFULL  

Need treatment but don’t know where to get it NDTRNDKWHR  

Need treatment but afraid neighbors would have a negative opinion NDTRNNDRNG  Stigma & other 
 Need treatment but afraid job will have a negative opinion NDTRNJOBNG  

Need treatment but afraid others would find out NDTRNFNDOU  

Need treatment but not ready to stop using NDTRNNSTOP  

Don’t think you need treatment NDTRNNONED   

Need treatment but think you can handle the problem without it NDTRNHANDL  

Need treatment but don’t think that it will help NDTRNNOHLP 

Need treatment but don’t have time NDTRNNTIME 

Some other reason NDTRNMIMPT 

 

We capture the effect of accessibility barriers through the treatment capacity constraint. The Tx demand 

fulfilment ratio reflects how much of treatment demand, after accounting for non-accessibility barriers, 

can be met given the available capacity: 
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𝐷𝐹𝑅 =
rUT(.)

rUT(.)
∗ =

MIN(rUT(.)
∗ , 𝐾𝐼(.))

rUT(.)
∗  (3. 7) 

We calculate a prior (see S4.a.ii)) for this value for buprenorphine in 2018 (
rUTB

rUTB
∗ ) based on a recent audit 

study (67), which tracked treatment-seeking attempts and the success rate at obtaining an appointment 

for buprenorphine treatment. Specifically, we use the number of appointments offered as a proxy for 

rUTB, and the sum of appointments offered and attempts failed due to access or capacity barriers as a 

proxy for rUTB
∗ , yielding a calculated demand fulfilment ratio of 58.7% in 2018 (see S4.b)). 

S3.c.iii) Treatment capacity 

We calculate total buprenorphine-waivered providers (𝐵), used to calculate effective buprenorphine 

capacity (𝐾𝐵) as described in S2.d.ii.(2), using multiple literature sources (see S3.e)). These studies have 

reported the estimated number of buprenorphine (i.e., DATA 2000) waivered providers each year since 

2003, when buprenorphine was first approved for OUD treatment. 

 

Figure S10. Observed patients per provider against number of waivered providers in historical data, compared with indicated 
and net average effective capacity per provider in model. The indicated average effective capacity (blue) reflects the diminishing 
marginal capacity per waivered provider, while the net average effective capacity (orange) also incorporates the effect of the 
capacity rampup delay. 

Comparing the number of patients receiving buprenorphine against the number of waivered providers 

shows that since around 2011, the average number of patients per waivered providers has been dropping 

as more providers get waivered (Figure S10). Combined with evidence that capacity continues to be a 

binding constraint on receipt of buprenorphine treatment (see above), we infer from this that the 

marginal contribution of each new waivered provider to effective capacity is diminishing, as explained in 
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S2.d.ii.(2). We also use the patients-per-provider data to estimate the Bup effective capacity rampup time 

(𝜏𝐾𝐵), which affects the fraction of indicated effective capacity per waivered provider that is actually 

online. We estimate the Bup effective capacity decay constant (𝜆𝐵) at 4.45E-5, base capacity per provider 

(�̂�0) at 42, and 𝜏𝐾𝐵 at 12 years, to match the empirically observed pattern (Figure S10; see also Figure 

S6). We define the Bup rampup start year at which point capacity starts to adjust toward indicated 

capacity as 𝑡𝐵= 2000.0 (note that this is actually prior to when buprenorphine was actually approved and 

the first providers waivered to approximate the fact that initial waivered providers had nonzero capacity 

at the time they were first waivered and reflected in the data). 

To our knowledge, there are no time series data available for methadone (MMT) and Vivitrol capacity 

(including from national treatment surveys such as N-SSATS). As such, we estimate theoretical capacity 

(𝐾(.)
∗ ) based on the number of patients receiving each of these types of treatment (see S3.c.i)) divided by 

the capacity utilization percentages (𝐹(.)
𝑇𝑈) reported for each in N-SSATS: 

𝐾(.)
∗ =

TM
𝑦

𝐹(.)
𝑇𝑈 , (. ) ∈ {M, V} (3. 8) 

Absent additional data, we assume the effective capacity fraction is equal to the capacity utilization 

percentage (𝐹(.)
𝑇 = 𝐹(.)

𝑇𝑈= 0.866 for methadone and 0.88 for Vivitrol). Note that this creates a circularity – 

effective treatment capacity (𝐾(.)) will be exactly equal to the number of patients receiving treatment T(.)
𝑦

, 

resulting in an artificially perfect fit between simulated patient numbers and data as long as capacity is 

the binding constraint on treatment receipt in the model. This circularity can only be resolved with 

additional data on treatment capacity. 

S3.c.iv) Treatment duration, outcomes, and effects 

S3.c.iv.(1) Average treatment duration and outcomes 

Average durations for buprenorphine, methadone, and Vivitrol treatment (𝜏𝑇(.)) are calculated from mean 

or median reported durations of treatment, weighted by sample size, in multiple studies over two decades 

(see S3.e)), at 0.61, 1, and 0.22 years respectively. Where studies reported only medians but not means, 

we approximated the mean using the approach from (68) based on either the interquartile range or 

minimum and maximum. 

While a positive relationship between duration of retention in treatment and ‘successful’ treatment 

outcomes (i.e., sustained remission either in or after leaving treatment) is well-established (69), we 

identified only one study that actually reports 1) what fraction of treatment patients leave treatment 

‘successfully’ vs. return to use disorder, 2) at various durations of treatment, and 3) how long on average 

each subgroup of patients remains in treatment (70).5 

As such, we also drew on expert estimates to quantify the relationship between duration and outcomes 

of treatment. Our expert panel stipulated a sigmoidal relationship, estimating a very low success rate for 

durations < 4 months, approximately 25-40% success at 1 year, depending on medication, and a maximum 

success rate of approximately 75-80% by about 5 years. Consistent with these estimates and those of (70), 

 
5 Specifically, (70) records that 28.8% of patients are successful, 36% drop out, and 18% are unsuccessfully 
transferred after median treatment durations of 39.5 weeks, 22.9 weeks, and 32.4 weeks respectively. 
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we parametrise the function for Tx success fraction (𝑝(.)
𝑅 ) to match these estimates, with 𝑚𝑅= 1, 𝜆𝑅= 3.5, 

𝜅𝑅= 0.85, and 𝑝𝑅𝑀= 0.8 (see S2.d.ii.(3)). Note that this results in higher success rates for treatment 

durations < 4 months than the near-zero rates that our experts estimated; however, there is evidence 

that some success with treatment is possible even after short durations (71). 

S3.c.iv.(2) Effects of treatment on mortality 

We express the effect of MOUD Tx on OD death rate / non-OD death rate (𝑤(.)
𝑇𝑂 / 𝑤(.)

𝑇𝑁) as multipliers of 

the respective mortality rates for people with HUD or OUD not receiving MOUD treatment. 

For non-OD mortality, we calculate an average aggregate non-OD mortality rate for untreated HUD and 

OUD groups of 1.43 people per 100 person-years. Based on reported hazard ratios, we calculate the effect 

of MOUD treatment (𝑤(.)
𝑇𝑁) at 0.54 for buprenorphine, 0.37 for MMT, and 0.93 for Vivitrol (see S3.e)). 

For the effect on OD mortality (𝑤(.)
𝑇𝑂), several studies report no significant difference between hazard 

ratios for buprenorphine and methadone. As our calculated averages for each were very close (0.301 and 

0.289, respectively), we instead use a combined average effect for buprenorphine and MMT of 0.295, 

with an effect of 0.439 for Vivitrol (see S3.e)). Note that for simplicity, we apply these multipliers to the 

overdose death rate, without modifying the base overdose rate. Insofar as the reductions reflect greater 

likelihood of resuscitation in the event of overdose, this is accurate; insofar as they may reflect reductions 

in baseline overdose rates, it likely means that non-fatal overdoses are being somewhat overestimated 

for people in MOUD treatment. This overestimation is, however, very small in absolute terms. 

S3.c.v) Remission 

Remission from disorder is a critical part of recovery, which ideally encompasses a return to functioning, 

health, and quality of life (72), though clinical remission is more narrowly defined as people who have had 

no symptoms of a substance use disorder for at least one year (1). The estimated millions of people who 

are in opioid use disorder remission (73) reflect the history of the crisis. They are both a potential role 

model and source of hope for others, and also remain at risk of relapse themselves. 

We found no reliable time series data on size of populations in remission, and so remission is excluded 

from our panel of time-series data used in model estimation. Nevertheless, their inclusion in the model is 

important, and indeed model performance is improved when this group is retained rather than allowed 

to disappear from the system. 

Initial values for remission stocks (RR, RO, RH, RRS, ROS, RHS) are estimated using findings from various papers 

analysing NESARC Waves I and II (see S3.e)). Once people enter remission, they are no longer distinguished 

by their treatment history. This distinction could be made in future iterations of the model, if data become 

available on rates of relapse after remission by treatment history and type. 

Note that though remission does not require abstinence, NSDUH does not identify people who report 

non-disordered use who are in remission from use disorder. Due to this lack of data, and to reduce model 

complexity, we do not represent non-abstinent remission (which would entail non-disordered use) as a 

separate state, nor do we capture flows of people from UD states into non-disordered use states. As a 

result, NSDUH respondents who report non-disordered use while in remission will be counted in the 

corresponding non-disordered use population counts (M𝑦 or N𝑦). 
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Remission via MOUD is a function of duration in treatment (see S2.d.ii.(3)). We specify the hazard rate of 

remission without MOUD for people with HUD (remission rate HUD no MOUD Tx, 𝜌𝑈𝑅𝐻) at 0.068 per 

person-year, based on a systematic review and meta-analysis of SUD remission rates (72). We use their 

pooled result for conservative (low) estimates of remission rates, as their review encompasses all SUDs, 

but HUD tends to be more severe than other SUDs. 

For people with Rx OUD, we estimate the hazard rate of remission (𝜌𝑈𝑅𝑅/𝜌𝑈𝑅𝑂) as part of the main model 

estimation process. We use the rate for people with HUD as a lower limit for this rate, to allow for the 

potential lower overall severity of Rx OUD compared to HUD. 

After some time in the remission stocks, people transition to stable remission (RSR, RSO, RSH), after which 

they are no longer at risk of relapse or overdose death. Evidence indicates that the risk of return to use 

disorder typically drops considerably after an average of at least five years in remission (74, 75), though 

with some variation and often taking longer. We therefore estimate the time to stabilize remission (𝜏𝑅𝑆) 

as part of the main model estimation process. 

S3.d) Overdoses, naloxone, and synthetics 

S3.d.i) Overdose mortality data 

We use annual multiple cause of death mortality data from CDC’s National Vital Statistics System (NVSS) 

to estimate overdose death flows (o(.)). The records in the NVSS microdata provide information on all 

deaths occurring within the United States, and each underlying cause of death is coded according to the 

International Classification of Diseases (ICD) classification system, Tenth Revision (ICD-10) (76). 

We identified all drug-related fatal overdoses in NVSS mortality data using the 

following ICD-10 underlying cause of death codes: X40–X44, X60–X64, X85, or 

Y10–Y14. Among these records, we identified opioid-involved fatal overdoses 

by type[s] of opioid, using the following ICD-10 codes: prescription opioids or 

methadone (T40.2 or T40.3), heroin (T40.1), synthetic opioids other than 

methadone (T40.4), and unspecified opioids (T40.6) (77). We group these 

records into a set of mutually exclusive and collectively exhaustive 

combinatorial categories, which we then aggregate into four streams of 

annual deaths (see Figure S11) involving:  

1) Prescription opioids or methadone, but not heroin or synthetics 

2) Heroin but not synthetics, possibly involving prescription opioids or 

methadone 

3) Synthetics but not heroin, possibly involving prescription opioids or 

methadone 

4) Synthetics and heroin, possibly involving prescription opioids or 

methadone 

Deaths involving only unspecified opioids are allocated in proportion to the 

size of these four categories each year. These four death data streams are read 

into the model to estimate overdose death flows. 

Figure S11: Allocation of 
overdose mortality by MECE 
categories to model data 
streams. Red indicates that a 
drug class is reported as 
involved in a death, and grey 
indicates it is not. 
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The NVSS data identify overdose deaths by the substance[s] involved, e.g., Rx opioids only, Rx opioids + 

heroin, heroin + synthetic opioids, synthetic opioids only, and so on. This creates a fundamental limitation 

– deaths are identified by the substance[s] involved in the last use episode[s] before death, not by the use 

behaviour that the decedent primarily engaged in, but SOURCE classifies people by use behaviour (e.g., 

Rx OUD vs. HUD). We allocate deaths involving a given substance to the user group[s] which primarily use 

that substance, recognising that this is a substantial simplifying assumption. People with Rx misuse or Rx 

OUD with or without heroin use (M, UR, UO) are assumed to contribute to Rx overdose deaths, while 

people with non-disordered heroin use or HUD (N, UH) contribute to heroin deaths. 

S3.d.ii) Synthetic death allocation structure 

Synthetic-involved deaths present an additional challenge. We do not explicitly identify synthetic users. 

Most synthetic use, especially since ~2013, involves illicitly manufactured synthetics that have entered 

the drug supply, whether as an adulterant in or replacement for heroin, or possibly in the form of 

counterfeit prescription pills. Unfortunately, the CDC data (or any overdose death data to our knowledge) 

do not distinguish between prescription and illicitly manufactured synthetics. 

Prior to ~2013, the vast majority of synthetic-involved deaths involved only synthetics, without other Rx 

opioids or heroin. All available evidence indicates that widespread fentanyl contamination of both pill and 

powder drug supplies only occurred after 2013 (33, 47, 48). We therefore assume that a small fraction of 

synthetic-involved deaths pre-2013 (specifically, those with co-reported heroin + synthetics) may have 

been due to low-level penetration of fentanyl in the illicit/powder drug supply (including a small but 

notable spike in 2005-2006 (78, 79)), but that the vast majority of synthetic-involved deaths at the time 

(i.e., those with no co-reported heroin) were due to intentional misuse of prescription fentanyl. This 

separation allows us to estimate the baseline rate of overdose due to prescription fentanyl (𝛽𝑅
𝑆), which 

we assume affects people with Rx OUD (80, 81). 

Using 𝛽𝑅
𝑆 based on pre-2013 data, we can then separate synthetic-involved overdose deaths after 2013 

into two streams: 

1) a ‘base’ stream driven by intentional prescription synthetic use (without co-reported heroin), and 

2) an ‘excess’ stream that combines 

a. synthetic deaths without co-reported heroin, less the projected base stream, presumably 

driven by largely unintentional use of illicitly manufactured fentanyl, with  

b. all synthetic deaths with co-reported heroin, driven by contamination of the heroin supply. 

The latter two streams collectively account for the excess deaths attributable to fentanyl penetration 

through its effects on the process of overdose death (see S2.d.iii.(3)), which allows estimation of the effect 

sizes involved. 

Note that we combine heroin deaths and excess synthetic deaths into a single stream for purposes of 

model estimation (see S4.b) for details). 

S3.d.iii) Fentanyl penetration 

We calculate a time series of fentanyl prevalence (fentanyl penetration curve, 𝜙) using data from the 

National Forensic Laboratory Information System (NFLIS). NFLIS aggregates the number of reports of 

various drugs from forensic analyses of substances seized by law enforcement. We calculate 𝜙 as the 
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fraction of reports involving fentanyl or its analogues out of the total reports of heroin or fentanyl & 

analogues each year: 

𝜙 =
𝑅𝑒𝑝𝑜𝑟𝑡𝑠 𝑜𝑓 𝑓𝑒𝑛𝑡𝑎𝑛𝑦𝑙 & 𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒𝑠

(𝑅𝑒𝑝𝑜𝑟𝑡𝑠 𝑜𝑓 ℎ𝑒𝑟𝑜𝑖𝑛 +  𝑅𝑒𝑝𝑜𝑟𝑡𝑠 𝑜𝑓 𝑓𝑒𝑛𝑡𝑎𝑛𝑦𝑙 & 𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒𝑠)
 (3. 9) 

Note that some portion of the reports of fentanyl & analogues may actually involve prescription fentanyl 

rather than illicitly manufactured fentanyl, as well as fentanyl pressed into counterfeit prescription pills 

as opposed to in powder form (see S2.d.iii.(3)). NFLIS data do not disambiguate reports by form or source, 

only substance. Because we cannot exclude these reports, 𝜙 is almost certainly an overestimate of 

powder-form, illicitly manufactured fentanyl as a fraction of heroin + fentanyl reports. However, several 

studies point to fentanyl exposure among heroin users being at least as great as indicated in NFLIS, if not 

much higher – at least 50% by 2017 (82–87). We therefore do not think the overestimation of 𝜙 due to 

prescription fentanyl or counterfeit prescription pills is of substantial concern. 

S3.d.iv) Naloxone distribution 

S3.d.iv.(1) Total kits distributed 

We approximate total naloxone distributed using two data sources, corresponding to the two main 

channels by which naloxone kits enter the community – distribution through harm reduction and other 

community programs, and pharmacy purchases. 

We calculate the former using the only published national data on naloxone kit distribution through 

community programs (88–90). These reports provide annual estimates of kits distributed for three years 

(2009, 2013, 2019). We extrapolate to other years from these data points using the annual percentage 

growth in programs and estimates reported in these three years. Note that after mid-2014, the only 

publicly available data are on injectable naloxone kits (i.e., not Narcan®) distributed by the OSNN naloxone 

buyer's club (90), a different sample of harm reduction programs than is reported on in 2012 and 2015. 

For naloxone purchased in pharmacies, we use IQVIA NPA® data (see S3.b.i)) on prescriptions for naloxone 

filled in outpatient pharmacies (retail and mail-order). 

These naloxone distribution totals do not include naloxone distributed to EMS, which are not reflected in 

sales data and for which, to our knowledge, time series data are not available at the national level. 

Naloxone is useful but not usually necessary for successful EMS intervention (91) (see S2.d.iii.(2)), so for 

simplicity, we do not include EMS naloxone use in the current version of the model. 

S3.d.iv.(2) Naloxone kit allocation 

Kits are not distributed equally between people who use prescription opioids vs. heroin (88), though we 

do not have a direct estimate of what fraction of kits go to heroin users (𝐹𝑁𝐻) vs. prescription opioid users, 

or more precisely, to people most likely to witness heroin user overdoses vs. prescription opioid user 

overdoses (e.g., including friends & family). 

In order to estimate 𝐹𝑁𝐻, we calculate the fraction of naloxone utilisation events involving heroin vs. 

prescription opioid overdoses, based on the total overdoses of each type multiplied by 𝑝𝑊𝑝𝐼𝐵(.). We 

anchor the estimate of 𝐹𝑁𝐻 using a prior value (see S4.a.ii)) for the fraction of utilisation events involving 

heroin overdoses. We calculate at this fraction at 86% based on the fraction of naloxone reversals 

reported to harm reduction programs involving heroin or something other than prescription opioids (88). 
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S3.d.iv.(3) Naloxone distribution efficiency 

We derive the functional form for probability Nx bystander…, 𝑝𝐼𝐵(.) (see S2.d.iii.(2)) based on data from 

(92), which is the only estimate to our knowledge of how naloxone distribution affects probability of 

utilisation in the event of overdose. (92) reports the probability of naloxone utilisation in witnessed 

overdoses across 12 U.S. states as a function of naloxone kits distributed per 100,000 population. It also 

reports partial data on how probability of naloxone utilisation varies by distribution channel (standing 

order vs. prescription vs community distribution, though these data are insufficient to derive separate 

functions. An exponential function fits well with both the aggregated and disaggregated data reported.  

Note that given the data available on total naloxone kits distributed (see above), this function results in 

naloxone kit utilisation fractions consistent with existing estimates from literature, which finds that 6-13% 

of all kits distributed are used (see S3.e)). 

S3.d.v) Intervention Probabilities 

We calculate probability OD witnessed (𝑝𝑊) as the weighted average of the proportion of nonfatal 

overdoses that have been reported as witnessed (76.4%) across six studies (see S3.e)). Note that most of 

the data for this estimate come from older studies, as newer studies tend to report only the fraction of 

fatal overdoses that are witnessed. Conditioning on overdose fatality skews the reported probability 

compared to the unconditional probability (𝑝𝑊), as whether an overdose is witnessed changes the net 

probability of death. Because the vast majority of overdoses are nonfatal, conditioning on overdoses being 

non-fatal results in less skew than conditioning on fatal overdoses, which are less likely to have been 

witnessed (41.1% weighted average; see S3.e)). In the absence of studies reporting aggregate witnessing 

probabilities for both fatal and nonfatal overdoses, we therefore use those with samples limited to the 

latter. 

We calculate probability of calling emergency services (𝑝𝐼𝐸) in the event of a witnessed overdose using 

the weighted average from 31 studies that reported the fraction of all events witnessed during which the 

witness or someone else present called emergency services, yielding 𝑝𝐼𝐸= 42.4% (see S3.e)). Most studies 

included people who use drugs, though some also included, e.g., friends and family members. Note that 

several studies were of people who had been trained in the use of naloxone, but at witnessed overdoses 

they reported only using naloxone and not also calling emergency services. Some evidence suggests 

possession of naloxone reduces the likelihood of calling emergency services (93), but we do not account 

for this potential interaction effect. 

S3.e) Literature sources for parameter estimates 

Various parameters in the model are synthesised from multiple studies following extensive literature 

searches. As a general rule, we sought to use multiple and diverse sources to compensate for the potential 

non-representativeness of study populations. Calculations and explanations for each parameter are 

described in the relevant sections above. Literature sources used are summarised in Table S7. 
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Table S7. Literature sources for parameter estimates 

Parameter name 
Parameter 

symbol 
Parameter 

value 
Sources 

Average duration for buprenorphine 𝜏𝑇𝐵 222.3 days, 
0.61 years 

(111, 112, 121–130, 113, 131, 
132, 114–120) 

Average duration for methadone 𝜏𝑇𝑀 365 days, 1 
year 

(111, 116, 135–137, 118, 120, 
125, 126, 129, 132–134) 

Average duration for injectable naltrexone 
(Vivitrol) 

𝜏𝑇𝑉 82.4 days, 
0.23 years 

(115, 130, 138–141) 

Average aggregate non-OD mortality rate for 
untreated OUD and HUD groups 

 1.43 per 100 
person-years 

(142–147) 

Buprenorphine-waivered providers 𝐵  (148–152)  

Effect of MOUD treatment on non-OD mortality 𝑤𝐵
𝑇𝑁 0.54 (143–147, 153–155) 

Effect of MOUD treatment on non-OD mortality 𝑤𝑀
𝑇𝑁 0.37 (143–147, 153–155) 

Effect of MOUD treatment on non-OD mortality 𝑤𝑉
𝑇𝑁 0.93 (143–147, 153–155) 

Effect of MOUD treatment on OD mortality 𝑤𝐵
𝑇𝑂, 𝑤𝑀

𝑇𝑂 0.295 (143–147, 153–155) 

Effect of MOUD treatment on OD mortality 𝑤𝑉
𝑇𝑂 0.439 (143–147, 153–155) 

Initial value for remission stocks RR, RO, RH, 
RRS, ROS, RHS 

 (156–160) 

Naloxone kit utilization fraction  6-13% (88, 161, 170, 171, 162–169) 

Probability OD witnessed 𝑝𝑊  76.4% (172–177) 

Probability fatal OD witnessed  41.1% (178–182) 

Probability of calling emergency services 𝑝𝐼𝐸  42.4% (161, 163, 179, 183–191, 164, 
192–201, 165, 202, 167, 169, 
171, 175–177) 

 

S3.f) Expert consultation process 

We developed SOURCE’s structure through an extensive process of iterative consultation with subject-

matter experts. In accordance with established best practices in model development (94), initial model 

development involved close engagement with client groups, consultations with subject-matter experts, 

and extensive review of existing literature, especially the few other models of the crisis extant at the time 

(95, 96). As part of this process, we interviewed 22 subject-matter experts within and outside the federal 

government, including clinicians, epidemiologists, and addiction and harm reduction experts. Initial 

development focused on identifying main feedbacks and areas of operational importance, while 

establishing a simulating (but not yet quantified) model structure. This stage of development lasted 

approximately nine months. 

We then iteratively refined the model through 30 meetings with an expert working group that included 

five clinicians and addiction experts and three modelling consultants, as well as nine additional meetings 

with other individual subject-matter experts. These discussions addressed issues such as the causal 

structure of important phenomena, expert estimates of various parameters, and questions of data 

interpretation, as well as testing and evaluation of model estimates and behaviour. Along with primary 

quantification, this process of model refinement took approximately 15 months.  
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S4) Model Estimation 

S4.a) Overview 

SOURCE is a nonlinear and complex model, which makes finding an estimation framework with clean, 

closed-form analytical solutions highly challenging and unlikely. Instead, we estimate the model by 

maximum likelihood (97), using a Gaussian likelihood function to fit simulated time series to historical 

data, as well as a penalty term on a small number of point observations of certain key ratios. 

The model can be thought of as a deterministic system of ordinary differential equations, with some set 

of unknown parameters (as well as known ones specified based on literature, expert estimates, etc., and 

exogenous time-series inputs). To avoid over-fitting, we do not use any time-varying parameter inputs 

(98), instead relying on endogenous feedbacks captured in the model structure to generate observed 

dynamics. 

The maximum likelihood estimation framework identifies the most likely value for each unknown 

parameter, given the historical data. We combine this with a Markov Chain Monte Carlo (MCMC) 

simulation approach (99, 100) to identify the credible regions of parameter space and quantify 

uncertainties in parameter estimates and projections. We describe a synthetic data validation procedure 

aimed at building confidence in the estimation framework in S4.e). 

S4.a.i) Likelihood function for historical data 

The model generates simulated expected values for several time series variables, such as populations in 

several use states and various transition flows between states (see Table S8 for full listing of time series 

used in estimation). Let 𝜇𝑖𝑡  represent simulated values for variable 𝑖 at time 𝑡, while 𝑦𝑖𝑡  represents the 

corresponding observed historical data points. With 𝜽 as the vector of unknown model parameters, we 

can summarise the model as a function f that yields predicted values for 𝜇𝑖𝑡  given 𝜽 as well as a set of 

exogenous time-series inputs 𝑥𝑗𝑡 (for variables j, e.g., prescribing rates, naloxone distribution; see Table 

S8 and S3) for details): 

𝜇𝑖𝑡 = 𝑓(𝜽, 𝑥𝑗𝑡) (4. 1) 

We use a Gaussian (log-) likelihood function to specify the likelihood of observing 𝑦 values given 𝜽 and 𝑥 

(which result in predictions 𝜇): 

𝐿𝑇(𝑦𝑖𝑡|𝜽, 𝑥𝑖𝑡) =∑ −
(𝜇𝑖𝑡 − 𝑦𝑖𝑡)

2

2𝜔𝑖
2

− ln(𝜔𝑖)
𝑖𝑡

 (4. 2) 

Summing the log-likelihood function over variables 𝑖 and times 𝑡 yields the full log-likelihood for observed 

data given a specific parameterisation and set of time-series inputs. The Gaussian function includes a set 

of scale parameters or calibration weights for each 𝑖 variable (𝜔𝑖), which we approximate with the 

standard deviations of the corresponding observed time series 𝑦𝑖𝑡. These weight variables account for 

differences in the underlying magnitude and variability of the different time series used. Note that this 

estimation approach assumes i.i.d. error terms; it may therefore result in overly narrow credible intervals 

on the resultant parameter estimates (see S4.e)). 
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S4.a.ii) Penalty terms for key point observations 

In addition to the likelihood value for observing historical data series, we also calculate a penalty term for 

certain key ratios and other point observations 𝑘 (see Table S9). These penalty terms represent priors 

derived from literature estimates, expert judgment, or limited datasets, which we incorporate to provide 

some constraint on the estimation process: 

𝐿𝑃(𝑦𝑘𝑡|𝜽, 𝑥𝑗𝑡) = −∑
(𝜇𝑘𝑡 − 𝑦𝑘𝑡)

2

2𝜔𝑘
2

𝑘𝑡
 (4. 3) 

Here 𝑦𝑘𝑡 represents the prior expected values for 𝑘 defined over specified time periods, which are 

compared against the model-generated values 𝜇𝑘𝑡. The scaling parameter 𝜔𝑘 represents the pre-specified 

allowable deviation of 𝑘 values from their prior expected values. 

While the selection of key observations 𝑘 and their prior expected values 𝑦𝑘𝑡 and allowable variance 𝜔𝑘 

are guided by existing data, there is inevitably an element of subjectivity in their selection. Such 

subjectivity, however, is not disqualifying. There is a degree of subjective judgment involved in any 

modelling endeavour, from problem definition to model specification to the estimation process, and 

indeed in all scientific endeavour in the first place. Incorporating priors in this manner allows us to inject 

valuable information into the estimation process without constraining it more than the quality of said 

information warrants. Absent the use of priors, we would either have to discard the informational value 

of these data points, or build them into hard constraints on parameters or fixed assumptions, neither of 

which seems like a desirable alternative. Instead, therefore, we aim to present the use of these assumed 

priors in a transparent manner while also validating the estimation procedure where possible (see S4.e)). 

Comparison of the model’s simulated key observations 𝑘 and their prior expected values 𝑦𝑘𝑡 are 

presented in S5.b), Table S12. 

S4.b) Data used in estimation 

Table S8 summarises the panel of time series data used in model estimation, whether as observed targets 

for model fitting 𝑦𝑖𝑡  or as exogenous input variables 𝑥𝑗𝑡. Sources and adjustments for these data are 

detailed in S3). The estimation period spans 1999-2020; see S6.d) for further information on the inclusion 

of the period of the COVID-19 pandemic. 
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Table S8. Panel of time-series data used in model estimation 

Time series Source Model variable[s] 

O
b

se
rv

ed
 d

at
a 

/ 
ca

lib
ra

ti
o

n
 t

ar
ge

ts
 𝑦
𝑖𝑡

 

Rx misuse no PY heroin NSDUH M 

Nondisordered heroin use NSDUH N 

Rx OUD no PY heroin NSDUH ∑ UR + (1 − 𝐹(.)
𝑅 )TR(.)

(.)
, (. ) ∈ {𝐵,𝑀, 𝑉} 

Rx OUD with PY heroin NSDUH ∑ UO + (1 − 𝐹(.)
𝑅 )TO(.)

(.)
, (. ) ∈ {𝐵,𝑀, 𝑉} 

HUD NSDUH ∑ UH + (1 − 𝐹(.)
𝑅 )TH(.)

(.)
, (. ) ∈ {𝐵,𝑀, 𝑉} 

Total buprenorphine patients Various (see 
S3.c.i)) 

∑ T(.)B
(.)

, (. ) ∈ {𝑅, 𝑂, 𝐻} 

Initiating Rx misuse own Rx NSDUH rMI 

Initiating Rx misuse diverted NSDUH rMD 

Total heroin initiation NSDUH rND + rMN + rUO 

Initiating heroin no Rx NSDUH 
RDAS 

rND 

Initiating heroin with Rx misuse NSDUH 
RDAS 

rMN 

Initiating heroin with Rx OUD NSDUH 
RDAS 

rUO 

Total overdose deaths base Rx NVSS omc + oM + oUR + oUO + oTR + oTO 

Total overdose deaths synth base NVSS oURS 

Total overdose deaths heroin & excess 
synthetics 

NVSS oUN + oUH + oUNF + oUHF + oTH 

Total overdose deaths NVSS ∑ o(.)
(.)

 

Ex
o

ge
n

o
u

s 
in

p
u

ts
 𝑥
𝑖𝑡

 

Patients receiving opioid prescription IQVIA mP 

Prescriptions per person IQVIA mN 

Average days per prescription IQVIA mD 

Average opioid MME per day IQVIA mM 

ADF fraction of prescribed opioids IQVIA 𝐹𝐴𝑅  

Buprenorphine-waivered treatment 
providers 

Various (see 
S3.c.iii)) 

𝐵 

Methadone maintenance treatment 
capacity* 

N-SSATS 𝐾𝑀  

Vivitrol® treatment capacity* IQVIA 𝐾𝑉  

Naloxone kits distributed IQVIA, 
various 

𝜈𝑇  

Heroin price index (1999 = 1) UNODC, 
STRIDE 

1 𝐷𝐴𝐻⁄  

Fentanyl penetration NFLIS 𝜙 
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Table S9. Point data used as priors 𝑦𝑘𝑡 in model estimation 

Prior Model variable[s] Year Value Source 

Nonfatal OD 
ratio Rx 

∑
𝜂𝑅(.)

𝜔𝑅(.)(.)
 < 2013 35 (203, 204) 

Nonfatal OD 
ratio heroin 

∑
𝜂𝐻(.)

𝜔𝐻(.)(.)
 < 2013 30 (203, 204) 

Bup demand 
fulfilment ratio 

rUTB
rUTB
∗  2018 0.587 (67) 

Probability Nx 
bystander heroin 

𝑝𝐼𝐵𝐻  
2019 0.2 Expert judgment 

Nx utilization 
events H user 
fraction 

∑ (n + o)𝐻(.)𝑝𝑊𝑝𝐼𝐵𝐻(.)

𝑝𝑊 ∑ ((n + o)𝐻(.)𝑝𝐼𝐵𝐻 + (n + o)𝑅(.)𝑝𝐼𝐵𝑅)(.)

 
2013 0.86 (88) 

Rx OUD in 
remission total 

R𝑅 + R𝑂 +∑ 𝐹(.)
𝑅 (T𝑅(.) + T𝑂(.))

(.)
 ,

(. ) ∈ {𝐵,𝑀, 𝑉} 

2013 893153 (159, 205) 

HUD in 
remission total 

R𝐻 +∑  𝐹(.)
𝑅T𝐻(.)

(.)
, (. ) ∈ {𝐵,𝑀, 𝑉} 2013 284174 (159, 160) 

Rx OUD in stable 
remission total 

R𝑆𝑅 + R𝑆𝑂 2013 1349830 (159, 205) 

HUD in stable 
remission total 

R𝑆𝐻 2013 485323 (159, 160) 

 

S4.c) Iterative estimation procedure 

With 53 estimated parameters and an additional 20 initial stock corrections, the model is sizeable, but not 

so large as to make searching the full parameter space computationally impractical. Nonetheless, to speed 

up the estimation process, we use a multi-step iterative procedure (Figure S12), estimating partial models 

first (101) in order to converge on the most likely region of parameter space before estimating the full 

parameter vector simultaneously. The goal of this process is first to identify the location in parameter 

space of the global peak in the likelihood surface, i.e., the most likely parameter set given the data and 

model structure, and second to define the credible region or hypervolume in parameter space around 

that maximum-likelihood peak. All steps prior to 7) use the Powell direction search method implemented 

in Vensim™ simulation software. 

 

Figure S12. Overview of iterative estimation procedure 

1) We split the parameter vector 𝜽 and the set of data variables used in calibration 𝑦𝑖𝑡  into a few 

subsets. Specifically, we define 𝜽o as the subset of parameters that directly affect overdose death 
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risks (as explained in S2.d.iii)), with 𝑦𝑜𝑡  being the data variables directly tracking overdose deaths; 

we also define 𝜽S as the subset of initial stock correction parameters (𝑚0(.)), explained further 

below. Remaining parameters (excluding 𝜽o and 𝜽S) we define as 𝜽m. 

2) We first estimate only the subset of parameters 𝜽o that directly affect overdoses, to maximise 

the likelihood of observing 𝑦𝑜𝑡, holding all other parameters constant at their previous best-

estimate values. The first time we perform this step during each estimation process, overdose 

deaths are calculated using exogenous data values 𝑦(.)𝑡 for all drug user stocks; subsequently, we 

use endogenously generated stock values. This is in effect a partial model calibration aimed at 

matching just the overdose death data using only overdose-related parameters. With 11 

overdose-related parameters included in this step out of 53 estimated parameters total, it helps 

to narrow down the plausible range of parameter space. 

3) Next we estimate only 𝜽m, using the full set of target data 𝑦𝑖𝑡, holding 𝜽o constant at the values 

estimated in step (2). 

4) Next we estimate only the initial stock correction parameters 𝜽S, using the full set of target data 

𝑦𝑖𝑡, holding 𝜽o and 𝜽m constant at previously estimated values. The initial stock corrections 

modify the baseline initial stock values (S(.)0
∗ ), which are derived from values of data at the 

initialisation of the run in 1999: 

 

S(.)0 = 𝑚0(.)S(.)0
∗  (4. 4) 

S(.)0
∗ = 𝑦(.)0 (4. 5) 

 

The correction parameters are necessary to allow initial stock values to differ from the first 

observed data points. These first data points (𝑦(.)0) are not inherently any more accurate than any 

other values for these stocks observed in the data (𝑦(.)𝑡), and are equally subject to random 

variation like process noise and measurement error. The estimation process accounts for such 

randomness over time; however, using the first data points directly as the initial stock values 

would effectively over-weight those first points, asserting that the random variation contained in 

their values is of zero magnitude. The initial stock corrections (𝑚0(.)) provide a means to avoid 

this problem, giving the first data points the same importance as any others. 

5) We iterate through steps (2)-(4), each time holding constant the parameter subsets (𝜽o, 𝜽S, 𝜽m) 

not being estimated in the current step at their last-estimated values, until the iterations cease to 

offer significant improvement (approx. 0.05% of total log-likelihood) when compared at step (3). 

At that point, we assume the estimation has converged to close to the optimal parameter set, 

speeding the subsequent steps. Step (4) is repeated one more time before moving on. 

6) We conduct a full optimization using the complete parameter vector 𝜽 and comparing the full set 

of time-series data 𝑦𝑖𝑡, starting from the parameter values estimated in the last iteration in step 

(5). This full optimization locates the exact peak in the full likelihood landscape, which 

corresponds to the best-fit maximum likelihood parameter set �̂� for the full model. 

7) Finally, we carry out an MCMC simulation to explore the likelihood surface in parameter space 

around �̂�. We use an MCMC algorithm designed for exploring high-dimensional parameter spaces 

using differential evolution with self-adaptive randomised subspace sampling (99). We use an 

extensive burn-in period of 1500000 MCMC samples, by which point the MCMC chains yield stable 

outcomes (Gelman-Rubin PSRF < 1.1 for 95.0% and < 1.2 for 98.8% of chains) (102); we then 

continue the MCMC to sample a further 1000000 outcomes, and then randomly take a subsample 
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of 5000 of those 1000000 sampled points to use for sensitivity analyses and projections (see S6)). 

We also use this subsample to derive 90% credible intervals for parameter estimates. 

This process is automated using a Python script that controls the simulation software (Vensim). We 

conduct the analysis using a parallel computing feature of Vensim on a multi-core Windows machine. Full 

analysis code is available online at https://github.com/FDA/SOURCE. 

S4.d) Quantifying uncertainties 

S4.d.i) Credible intervals for parameter estimates 

Estimated parameters can have interacting effects on the total likelihood and overall fit of the model to 

observed data. Maximum likelihood parameter estimates are therefore not independent, but should be 

thought of as a parameter set �̂�. Similarly, the MCMC simulation explores the high-likelihood credible 

region of parameter space, producing a sample or subsample of credible parameter sets. This credible 

region provides a more meaningful quantification of uncertainty in parameter estimates than univariate 

ranges, which are in effect the projections of the credible region onto each parameter’s axis. We therefore 

utilise the MCMC subsample of credible parameter sets for projections and sensitivity analyses, detailed 

below. 

However, reporting a high-dimensional credible region is impractical and difficult to present meaningfully. 

For transparency, we report here the univariate 90% credible intervals for each parameter (Table S10 in 

S5.a)), with the caveat that there may be substantial covariation between different estimated parameters 

(due to, e.g., compensatory effects) that the univariate intervals will miss. The full MCMC subsample that 

defines this region is available online at https://github.com/FDA/SOURCE. 

S4.d.ii) Estimating measurement error 

The estimation procedure identifies the region of parameter space that results in the highest likelihood 

of observing the data 𝑦𝑖𝑡  given the model 𝑓. The model, however, is deterministic, and does not account 

for random process noise nor measurement error. Model-generated predictions based on the maximum-

likelihood parameter set, �̂�𝑖𝑡, therefore represent expected values for observed variables 𝑦𝑖𝑡, rather than 

predictions or projections of the exact unobserved realisations of variables 𝑖, which will include process 

noise, or of observed variables 𝑦𝑖𝑡, which will include measurement error as well. Similarly, projections 

based on the credible region of parameter space around �̂� capture uncertainty in the expected values of 

observed variables, rather than the full range of uncertainty in possible trajectories for those variables, 

which includes the aforementioned sources of randomness. 

In order to make projections that better express the range of possible trajectories, therefore, we need to 

account for such randomness. We do this by injecting random noise into model projections for variables 

𝑖, with a unique realisation of this noise stream for each parameter set in the credible region used in 

projections or sensitivity analyses. 

To parametrise the distribution of this noise term, we fit a multivariate Normal distribution to the 

residuals from the main model estimation process. Use of a multivariate rather than independent 

univariate Normal distributions is important as many of the observed variables draw on the same few 

data sources (e.g., NSDUH, NVSS), so there is likely to be substantial covariance in their measurement 

errors. On the other hand, while autocorrelation is a common issue with time-series data, the long interval 

https://github.com/FDA/SOURCE
https://github.com/FDA/SOURCE
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between data points (1 year) relative to the speed of underlying processes means there is little 

autocorrelation in the residuals, with most sources of inertia in the data accounted for by model 

mechanisms. We therefore use noise terms without autocorrelation. 

For a handful of estimated variables, there is a clear systematic bias in the temporal pattern of the 

residuals (see S5.b)). Reasons for these biases are largely understood and excluded from current model 

scope, as discussed further in S5.b). In order to accurately approximate the random, unbiased component 

of measurement error (and generate realistic synthetic data; see below), before fitting the noise 

distribution, we first detrend the residuals using a fitted 2nd-order polynomial function. We then fit the 

multivariate Normal distribution to the detrended residuals. 

S4.e) Synthetic data validation 

To build confidence in our estimation framework, we conducted a synthetic data experiment to better 

assess its accuracy. We generate synthetic data representing artificial ‘parallel universes’ by simulating 

the model with known parameter values combined with simulated measurement noise. We then attempt 

to recover those parameter values from the simulated data using our exact estimation framework. We 

can then assess how well the estimated parameters and credible intervals correspond to the known, true 

values. 

S4.e.i) Data generation and estimation 

To generate the synthetic data, we first randomly draw 20 parameter sets 𝜽𝒔 from the MCMC subsample 

generated in the main model estimation process as described in S4.b). Since these parameters sets are 

drawn from the credible region of parameter space, they provide plausible alternatives similar but not 

identical to the model’s estimated most-likely parameter set �̂�. We then simulate the model using these 

parameter sets, injecting ‘measurement’ noise into simulated model outputs to create realistic ‘observed’ 

values for data, 𝑦𝑖𝑡
𝑠 . The noise stream for each synthetic data set is randomly drawn from the same 

multivariate Normal distribution estimated for the residuals from the main model estimation process, as 

described in S4.d.ii). 

The synthetic data sets thus generated are available online at https://github.com/FDA/SOURCE. 

We then estimate the model using each synthetic data set 𝑦𝑖𝑡
𝑠  in turn, in place of observed data. We use 

the same set of exogenous time-series inputs 𝑥𝑗𝑡 for each estimation. Estimation follows the same 

procedure as for the main model, described in S4.b). As with the main estimation, we start with 

uninformed priors on all parameters (uniform distributions with large ranges). 

S4.e.ii) Synthetic data estimation results 

The synthetic data estimation process covers a total of 1460 parameters (20 synthetic data sets x (53 

parameters + 20 initials each)). In most cases, the estimation process recovers results close to the ‘true’ 

parameter values from the synthetic data, with the median distance between estimated and true values 

expressed as a percentage of the width of the estimated 95% credible interval at 28%. 

Overall, estimated credible intervals contain true values at close to, but slightly under, the theoretically 

expected rates – the 50%, 80%, 90%, 95%, and 98% CIs contain true parameter values 35%, 60%, 72%, 

78%, and 82% of the time respectively (Figure S13). The under-fitting indicates that estimated CIs are on 

the whole slightly narrower than they should be, i.e., that the estimation of CIs is slightly over-confident. 

https://github.com/FDA/SOURCE
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The most likely driver of this overconfidence is the existence of covariance between different time series 

used in estimation, in both errors and expected values. The error covariance is captured in the 

measurement noise estimation (see S4.d.ii)) and hence the synthetic data. The estimation process, 

however, treats each time series used as an independent component of the likelihood function. As such, 

the estimation process ‘overstates’ the informational content of the time series data used in estimation 

(which is lowered due to covariance), resulting in overconfident, i.e., overly narrow credible intervals. In 

addition, it is possible that there is some over-dispersion of error terms, such that an alternative likelihood 

function (e.g., exponential, negative binomial) may be more suitable for estimation and would yield more 

theoretically accurate (i.e., wider) CIs. 

In light of these factors, while not perfect, the estimation process performs very well – in benchmark tests 

on a far simpler SEIR model, similar Gaussian maximum likelihood estimates performed far worse (<20% 

true values in 50% CI, and <40% in 90% CI) (103). This result therefore gives some confidence that our 

estimated credible intervals, while on the narrow side, are reasonable approximations of the most likely 

ranges of true parameter values. 

Complete results of the synthetic data estimation exercise are presented in S5.d). 

 

Figure S13. Theoretical vs. actual percentage of parameters contained within different credible intervals. The dashed 1:1 
diagonal would indicate perfect matching between theoretical and estimated CIs. 

 

S4.f) Out-of-sample validation 

To build further confidence in our model estimates and projections, we also conducted an out-of-sample 

test using a holdout dataset to assess the model’s predictive capabilities. 
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This test should be approached advisedly. Feedback-driven dynamic models like SOURCE seek to 

endogenously capture the shifting drivers of important system processes over time. However, even with 

as broad-boundary a model as SOURCE, there remain several major drivers of the crisis which the model 

treats exogenously, such as MOUD capacity or, most importantly, fentanyl prevalence. Where emergent 

features of the opioid crisis arise primarily from these exogenous changes (rather than endogenous 

dynamics), the model will have little basis for quantitatively predicting the impacts. In addition, the 

temporal sparseness of the relevant data – most of which are only available annually – can limit the 

precision of certain parameter estimates. Nevertheless, the model’s ability (or failure) to predict observed 

trends remains informative. 

S4.f.i) Estimation & assessment process 

The first step of the out-of-sample test is estimating model parameters and uncertainties exactly as 

described in S4.a)-S4.d) above, but using calibration data 𝑦𝑖𝑡  only from 1999-2012 (inclusive), using the 

remainder of the data as the holdout dataset for comparison. 

We then use the MCMC subsample of credible parameter sets and estimated measurement noise (see 

S4.d)) to project a set of credible ranges for predicted observed data 𝑦𝑖𝑡
𝑝

 for 2012-2020. This process is 

similar to synthetic data generation (see S4.e.i)), but uses the full MCMC subsample rather than just 20 

individual parameter sets. Note that as with synthetic data generation, we use the actual exogenous input 

variables 𝑥𝑗𝑡 to generate these predicted values. 

Finally, we compare the predicted observations and credible ranges 𝑦𝑖𝑡
𝑝

 to actual observed data 𝑦𝑖𝑡  in the 

holdout dataset, to assess the model’s performance. 

S4.f.ii) Out-of-sample validation results 

The holdout dataset contains a total of 120 data points (15 observed time series6 over 8 years each). Of 

these, 72% (86/120) fall within the predicted 95% credible intervals. 

While the level of predictive accuracy could be higher, it is reasonably good considering that the 

estimation period up to 2012 excludes virtually the entirety of the surge in illicit fentanyl, which started 

in ~2013. As such this predictive performance is despite the estimation having little basis for accurate 

estimation of fentanyl’s lethality and identification of relevant parameters. 

More importantly, the model correctly projects trend changes in several variables, including Rx opioid 

overdose deaths, OUD / HUD, and heroin initiation from prior Rx use (Figure S19). The ability to predict 

shifts in trends not yet evident in the estimation data is a good indicator that the model’s structure 

accurately reflects important components of the actual system structure (104), i.e., the data-generating 

processes. Such evidence of structural soundness in turn gives confidence in the model’s ability to project 

future developments. 

Complete results of the out-of-sample validation exercise are presented in S5.e). 

  

 
6 The model estimation uses 16 observed time series altogether (see Table S8), but one series, total overdose deaths 
synth base (oURS), ends in 2012, and so is absent from the holdout dataset. 
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S5) Full Results 

S5.a) Full parameter estimates 

Table S10 shows most likely values �̂� as well as medians and 90% credible intervals for all 53 estimated 

parameters and 20 initial stock value adjustments 𝜽. In some cases, the most likely value falls outside the 

90% credible interval. While uncommon, this is not inherently erroneous – it could for instance indicate a 

‘cliff-shaped’ likelihood surface, shallow-sloped on one side of its highest point and dropping off steeply 

on the other.  

Table S10. Complete list of estimated parameter values & credible intervals 

 
Value 0.05 0.5 0.95 

ADF effect strength initiating heroin with Rx OUD 1.00E-06 1.00E-06 0.1357 0.5355 

Base survival probability H OD relative to Rx 0.9806 0.9625 0.9833 0.9923 

Base survival probability Rx OD 0.9734 0.9670 0.9734 0.9776 

Developing HUD rate no Rx OUD 0.05 0.05 0.0532 0.0646 

Developing HUD rate with Rx OUD 0.5345 0.4413 0.5403 0.6466 

Developing Rx OUD rate 0.0297 0.0251 0.0284 0.0322 

Fentanyl effect on base survival max relative to H 0.7358 0.6054 0.7579 0.7923 

Fentanyl effect on OD rate H max 2 2 2.0179 2.0941 

Fraction Nx kits to H users 0.9371 0.9109 0.9337 0.95 

Heroin availability strength developing HUD 1.00E-06 1.00E-06 0.0325 0.1581 

Heroin availability strength initiating NDHU no Rx 1.00E-06 1.00E-06 0.0246 0.1064 

Heroin availability strength net quit NDHU 1.4641 1.1020 1.5075 1.9014 

Initial stock correction[RXM] 1.1476 1.0613 1.1567 1.2 

Initial stock correction[NDH] 1.2 1.1344 1.1850 1.2 

Initial stock correction[OUB] 1.1326 0.8124 1.0361 1.2 

Initial stock correction[OUM] 0.8 0.8 0.9892 1.1908 

Initial stock correction[OUV] 1.0603 0.8036 1.0068 1.2 

Initial stock correction[OUT] 0.9841 0.8638 0.9803 1.1091 

Initial stock correction[OUR] 0.8 0.8 0.8225 0.9272 

Initial stock correction[OUS] 0.8 0.8 0.8110 0.8479 

Initial stock correction[OHB] 0.9197 0.8 0.9423 1.1746 

Initial stock correction[OHM] 0.8 0.8 0.9779 1.1880 

Initial stock correction[OHV] 1.0532 0.8 0.9746 1.1919 

Initial stock correction[OHT] 1.2 0.8237 1.0459 1.2 

Initial stock correction[OHR] 0.8 0.8 0.9053 1.1513 

Initial stock correction[OHS] 0.8 0.8 0.9196 1.1669 

Initial stock correction[HUB] 0.9486 0.8 0.9675 1.1890 

Initial stock correction[HUM] 1.2 1.0890 1.1760 1.2 

Initial stock correction[HUV] 1.0960 0.8 0.9631 1.1918 

Initial stock correction[HUT] 0.8 0.8 0.8071 0.8369 

Initial stock correction[HUR] 1.2 0.9183 1.1256 1.2 

Initial stock correction[HUS] 1.2 1.1379 1.1863 1.2 

Initiating heroin no Rx base 119578 113597 119109 124251 

Initiating Rx misuse diverted base 1879840 1800000 1870839 2040037 

Initiation rate heroin with Rx misuse 0.0134 0.0121 0.0130 0.0142 

Initiation rate heroin with Rx OUD relative to Rx misuse 4.2679 3.8660 4.3846 4.9072 

Initiation rate Rx misuse own Rx 0.0346 0.0297 0.0347 0.0405 
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Net quit rate heroin with Rx misuse 0.0924 0.0469 0.1020 0.1532 

Net quit rate heroin with Rx OUD 0.1023 0.0334 0.0932 0.1660 

Net quit rate NDHU 0.5 0.4461 0.4899 0.5 

Net quit rate Rx misuse 0.1432 0.1192 0.1454 0.1742 

NSDUH misuse redefinition fixed effect 0.4401 0.3940 0.4442 0.4930 

Nx kit distribution efficiency 0.0003 0.0003 0.0003 0.0004 

Overdose rate base HUD 0.1674 0.1152 0.1801 0.1996 

Overdose rate NDHU relative to HUD 0.25 0.25 0.2592 0.3082 

Overdose rate base Rx misuse 0.001 0.001 0.0015 0.0034 

Overdose rate base Rx OUD 0.2513 0.1985 0.2492 0.2976 

Overdose rate synth baseline 0.0072 0.0051 0.0078 0.0092 

Perceived risk strength initiating heroin with Rx use 0.9277 0.8017 0.9296 1.0431 

Perceived risk strength initiating NDHU no Rx 0.2714 0.1893 0.2933 0.4201 

Perceived risk strength initiating Rx misuse diverted 0.5556 0.4323 0.5313 0.6678 

Perceived risk strength initiating Rx misuse own Rx 0.5659 0.3599 0.5898 0.8234 

Perceived risk strength net quit heroin with Rx OUD 1.00E-06 1.00E-06 0.1725 0.4665 

Perceived risk strength net quit NDHU 1.00E-06 1.00E-06 0.0083 0.0392 

Perceived risk strength net quit NDHU with Rx 1.00E-06 1.00E-06 0.0159 0.0829 

Perceived risk strength net quit Rx misuse 0.5592 0.3590 0.5607 0.7615 

Relapse rate HUD 0.5830 0.5054 0.5678 0.6410 

Relapse rate Rx OUD relative to HUD 0.1375 0.1247 0.1868 0.3595 

Remission rate Rx OUD relative to HUD 1 1 1.1434 1.5645 

Rx availability strength developing Rx OUD 1.2152 0.9569 1.2665 1.6151 

Rx availability strength initiating Rx misuse 0.3883 0.0154 0.3385 0.7456 

Rx availability strength net quit Rx misuse 1.0443 0.6509 1.0552 1.4777 

Rx vs H availability strength developing HUD with Rx OUD 1.2648 0.7996 1.2011 1.6651 

Rx vs H availability strength initiating heroin with Rx OUD 1.00E-06 1.00E-06 0.0169 0.0805 

Rx vs H availability strength initiating NDHU with Rx 0.1890 0.0346 0.1997 0.3738 

Social influence strength developing HUD 1.00E-06 1.00E-06 0.0146 0.0629 

Social influence strength developing Rx OUD 1.00E-06 1.00E-06 0.0317 0.1387 

Social influence strength initiating heroin with Rx OUD 1.9518 1.7373 1.9203 2 

Social influence strength initiating NDHU no Rx 0.1208 0.0061 0.1370 0.3317 

Social influence strength initiating NDHU with Rx 1.7896 1.5926 1.8060 1.9780 

Social influence strength initiating Rx misuse 0.7902 0.4611 0.7923 1.1234 

Time to stabilize remission 9.7425 8.8793 9.6251 10.4528 

Tx seeking rate Rx OUD no H total 0.4932 0.3754 0.5194 0.8204 

 

S5.b) Fit to historical data 

Figure S14 shows fit between simulated model output 𝜇𝑖𝑡  and historical data 𝑦𝑖𝑡  for all time-series data 

used in model estimation (see Table S8 in S4.b)), spanning 1999-2020. 
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Figure S14. Comparison of simulated model output (blue) to historical data (grey) for all time-series data used in estimation 

Table S11 reports full quality-of-fit metrics for each estimated time series. Most of the time series fit well, 

with the majority of error stemming from unequal covariance (Uc), indicating an unbiased estimation (21, 

105). 

In a few cases there is substantial unequal variance (Us) or bias (Um). Notably, for overdose flows, there is 

some degree of systematic skew. The most likely reason for this is cohort effects on the likelihood of 

overdose which we do not incorporate in our model, particularly for people with Rx OUD. For Rx-involved 

overdose deaths, trends in the prescribing of benzodiazepines and their joint use with prescription opioids 

may play some role as well. For heroin & illicit synthetic overdoses, anecdotal reports indicate changes in 

the purity and potency of heroin in the years around 2010, when mortality data show sharper rises in 

overdose deaths than our estimates. However, reliable data on heroin purity are extremely difficult to 

obtain, especially at regional level, so we have been unable to test for this effect.7 

 

 
7 We examined several other potential explanations, including the roles of drug availability, prevalence of injection 
drug use, prevalence of polysubstance use, and a ‘naivete’ effect with new initiates being more vulnerable to 
overdose; none of these were able to account for the skew, or more precisely, the divergence between trends in use 
disorder prevalence and overdose mortality, which are generally otherwise closely correlated. 
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Table S11. Goodness of fit statistics for each estimated time series 

 
MAEN MAPE R2 MSE Um Us Uc 

Rx misuse 0.070 0.077 0.896 4.70E+11 0.005 0.288 0.707 

Rx OUD no heroin 0.099 0.102 0.775 4.81E+10 0.035 0.050 0.915 

Rx OUD with heroin 0.254 0.310 0.718 2.03E+09 0.002 0.170 0.828 

Nondisordered heroin use 0.266 0.269 0.201 4.14E+10 0.005 0.145 0.850 

Heroin use disorder 0.116 0.119 0.836 4.89E+10 0.007 0.032 0.960 

MOUD Tx (buprenorphine) 0.031 0.112 0.998 1.81E+08 0.007 0.072 0.921 

Rx misuse initiation (own Rx) 0.098 0.111 0.506 1.51E+09 0.001 0.000 0.999 

Rx misuse initiation (diverted) 0.047 0.055 0.953 8.58E+09 0.008 0.012 0.980 

Total heroin initiation 0.193 0.211 0.513 7.67E+09 0.030 0.012 0.958 

Heroin initiation (direct) 0.223 0.249 0.192 7.99E+08 0.001 0.500 0.499 

Heroin initiation (Rx misuse) 0.205 0.242 0.582 1.25E+09 0.015 0.022 0.963 

Heroin initiation (Rx OUD) 0.189 0.241 0.754 1.08E+09 0.015 0.004 0.981 

Overdose deaths (Rx) 0.094 0.114 0.894 1.39E+06 0.000 0.373 0.627 

Overdose deaths (heroin & illicit synthetics) 0.193 0.424 0.969 9.28E+06 0.008 0.221 0.771 

Overdose deaths (synthetics base) 0.088 0.086 0.900 5.80E+04 0.027 0.056 0.917 

Total overdose deaths 0.083 0.094 0.969 8.19E+06 0.010 0.101 0.889 

 

Table S12 reports simulated values for key point observations used as prior expected values in the 

estimation process (see S4.a.ii)). Most of the simulated values are close to their prior expected values in 

the relevant years, with the exception of Rx OUD in remission, which is somewhat lower than expected. 

Table S12. Simulated values for key point observations 

Prior Year Prior Value Simulated Value (5-95 CI) 

Nonfatal OD ratio Rx < 2013 35 36 (29-43) 

Nonfatal OD ratio heroin < 2013 30 31 (22-38) 

Bup demand fulfilment ratio 2018 0.587 0.587 (0.350-0.765) 

Probability Nx bystander heroin 2019 0.2 0.20 (0.19-0.21) 

Nx utilization events H user fraction 2013 0.86 0.86 (0.83-0.88) 

Rx OUD in remission total 2013 893153 853840 (809155-903527) 

HUD in remission total 2013 284174 348994 (333881-377700) 

Rx OUD in stable remission total 2013 1349830 1436970 (1423930-1516760) 

HUD in stable remission total 2013 485323 415899 (395961-440437) 

 

S5.c) Base case projections 

Figure S15 shows base case projections under ‘exogenous trends continue’ (ETC) assumptions for all time-

series data used in model estimation (see Table S8 in S4.b)). As noted in the main text, these projections 

should not be considered a precise forecast. Note that the projected trajectories and credible intervals 

reflect projected expected values for observed variables, with uncertainty arising only due to uncertainty 

in parameter estimates, rather than exact observed / reported realizations of those variables, which will 

also include uncertainty due to measurement noise; see S4.d.ii) for further details. 

The projections show an overall decline in opioid use, use disorder, and mortality for both prescription 

and illicit opioids. This decline arises in significant part because of the continued effects of perceived risk 

and social influence driving falls in heroin use that appear to already be under way. This projected pattern 
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depends in part on the reliability of the most recent 1-2 years of heroin use data from NSDUH (see 

S3.a.iv.(1)), which should temper interpretation of these trends. However, even with some rebound or 

increase in use in 2020 presumably due to the effects of the COVID-19 pandemic, the projected decline 

nonetheless persists. 

The ETC projections include a slight rebound in prescription opioid use later this decade. Under ETC 

assumptions, levels of prescribing will fall somewhat from current levels, but remain significant (Table 

S13). This scenario thus presumes continued exposure of large numbers of people to potentially highly 

addictive prescription opioids, which combined with an attenuating risk response, may lead to an eventual 

rebound in prescription opioid misuse. 

In addition to ETC projections, we also test an ‘optimistic’ and ‘pessimistic’ input assumptions scenario, 

shown in Figure S16 and Figure S17. The ‘optimistic’ scenario assumes greater increases in MOUD capacity 

and naloxone availability, larger reductions in opioid analgesic prescribing, and a smaller increase in 

fentanyl prevalence compared to ETC assumptions, and vice-versa for the ‘pessimistic’ scenario(see Table 

S13 for full details). The resultant differences in projected trends are instructive. 

Table S13. Exogenous inputs with alternative base case assumptions for projections 

Exogenous Input Variable Source 2020 value 

2032 Assumed Value*** 

ETC Optimistic Pessimistic 

Fentanyl penetration NFLIS 56.2% 80.7% 69.8% 99.5% 

Naloxone kits distributed IQVIA, 
various* 2.30 million 3.60 million 4.22 million 2.94 million 

Heroin price index (1999 = 1) UNODC, 
STRIDE 0.49 0.49 0.58 0.40 

Buprenorphine-waivered 
treatment providers 

Various* 
94,200 178,300 224,900 134,500 

Methadone maintenance 
treatment capacity** 

N-SSATS 
360,000 646,000 765,000 528,000 

Vivitrol® treatment capacity** IQVIA 32,900 45,800 52,700 39,900 

Patients receiving opioid 
analgesic prescription 

IQVIA 
41.3 million 28.4 million 22.3 million 35.1 million 

Prescriptions per person IQVIA 3.49 3.31 3.01 3.50 

Average days per prescription IQVIA 24.4 26.8 24.0 28.0 

Average opioid MME per day IQVIA 31.3 23.6 20.2 28.0 

ADF fraction of prescribed 
opioids (% of MME) 

IQVIA 
4.9% 3.1% 3.1% 3.1% 

* See S3.c.iii) and S3.d.iv.(1) for full details of data sources & calculations 
** Neither MMT nor Vivitrol capacity data are directly available; instead we calculate capacity based on treatment 
utilization data from the sources listed; see S3.c.iii) 
*** Broadly, the ‘optimistic’ scenario assumes stronger trends (1.5x ETC) in naloxone distribution, MOUD 
treatment capacity, and downward-trending aspects of prescribing, and weaker trends (0.5x ETC) in fentanyl 
penetration and upward-trending aspects of prescribing; vice-versa for the ‘pessimistic’ scenario. 

 

Notably, in the ‘pessimistic’ case, while overdose deaths involving heroin and illicit synthetics rise 

substantially over the next few years, they nonetheless peak and start to decline. The increase is driven 

almost entirely by rapidly increasing fentanyl prevalence (see also S6.c)) in this scenario leading to growing 

overdose hazard and lethality for people who use heroin. Eventually, though, the falling prevalence of 
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heroin use (due to declining initiation) outpaces the increasing overdose hazard, and mortality starts to 

decline. For this reason, even if ongoing effects of the pandemic lead to increases in use, use disorder, or 

mortality through 2021, the projected declines are likely to occur (albeit from a higher peak) within the 

next few years. 

The three scenarios also show noticeable differences in the prevalence of prescription opioid misuse and 

use disorder, as well as prescription-opioid-driven overdose deaths. These differences indicate that future 

trends in prescribing could substantially affect the trajectory of opioid use, with the potential for a more 

rapid rebound if the decade-long trend of falling opioid prescribing were to be reversed. Even with these 

rebounds, however, overall opioid-involved overdose mortality still declines even in the ‘pessimistic’ case 

despite rising prescription-opioid-driven deaths. 

We must reiterate that despite the robustness of the projected declines in overdose mortality to different 

input scenarios, these projections categorically must not be interpreted as downplaying the severity of 

the crisis or lessening the need for intervention, as they still entail hundreds of thousands of deaths over 

the next decade. Instead, they highlight that the goal of policy should not merely be to achieve declines 

in mortality, but to do so faster and sooner than would otherwise occur anyway. 

 

Figure S15. Base case ('exogenous trends continue') projections for all time-series data used in estimation. Shaded areas indicate 
95% credible intervals, not accounting for measurement noise. 
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Figure S16. 'Optimistic’ case projections for all time-series data used in estimation. The ‘optimistic’ scenario assumes more rapid 
reductions in opioid prescribing, more rapid increases in MOUD capacity and naloxone availability, less rapid growth in IMF 
prevalence, and reductions in heroin availability. Shaded areas indicate 95% credible intervals, not accounting for measurement 
noise. 
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Figure S17. 'Pessimistic’ case projections for all time-series data used in estimation. The ‘pessimistic’ scenario assumes growth in 
opioid prescribing, slower increases in MOUD capacity and naloxone availability, more rapid growth in IMF prevalence, and 
increases in heroin availability. Shaded areas indicate 95% credible intervals, not accounting for measurement noise. 

 

S5.d) Full synthetic data estimation results 

Figure S18 shows complete results of the synthetic data estimation exercise (see S4.e)) for all 20 synthetic 

data sets and all estimated parameters. Most estimated parameters values are close to their ‘true’ 

synthetic values across the board, with their 95% CIs containing ‘true’ values in most of the 20 runs. 

Several of the parameters that perform poorly in this regard are feedback effect strengths with ‘true’ 

values close to zero (e.g., some availability and social influence strengths), which due to their exponential 

formulation (see S2.c)) have little effect at such values. Relapse and remission rates, which have little data 

to anchor them in the estimation and can compensate for each other to some degree, also perform 

relatively poorly. 
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Figure S18. Estimated values & 95% credible intervals for all synthetic data parameters compared with ‘true’ values (estimated 
value & CI = blue dots & bars; true value = red crosses). Numbers in parentheses after each variable name indicate the fraction 
of true values for that parameter falling within estimated 95% CIs. 

 

S5.e) Full out-of-sample validation results 

Figure S19 shows complete results of the out-of-sample validation test (see S4.f)), comparing all model 

output 𝜇𝑖𝑡  and predicted 95% credible intervals against historical data 𝑦𝑖𝑡  for all time-series data used in 

model estimation. Note that the figure shows credible intervals for estimated underlying or expected 

values �̂�𝑖𝑡  prior to 2012, and predicted observed values 𝑦𝑖𝑡
𝑝

 for 2012-2020. 

As discussed in S4.f.ii), most data points in the holdout dataset fall within the predicted 95% credible 

intervals. Furthermore, many of the missed datapoints fall just outside those intervals, e.g., for Rx opioid 

overdose deaths, heroin initiation from prior Rx misuse / Rx OUD / in total, and heroin & illicit synthetic / 

total overdose deaths for the period from ~2013-2016. The model correctly projects trend changes in Rx 

OUD (with and without heroin), HUD, heroin initiation from prior Rx misuse / Rx OUD / in total, and Rx 

opioid overdose deaths. 
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Figure S19. Comparison of model projections (blue) against historical data (grey), showing predictive accuracy for out-of-sample 
validation test. Bands are 95% CrIs for estimated underlying values (estimation portion, before 2012) and for projected reported 
data (after 2012); projected reported values account for measurement noise, which is present in the actual holdout data. 
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S6) Sensitivity Analyses 

S6.a) Sensitivity of outcomes to parametric assumptions 

SOURCE includes 42 parametric assumptions drawn from literature and/or expert input (see S3). To assess 

the sensitivity of the model to these assumptions, we conducted sensitivity analyses on several of these 

parameters, varying them by ±10% and re-estimating the model in accordance with S4.c). 

To keep the analysis computationally tractable, we do not test all 42 parametric assumptions, instead 

focusing on those with major structural roles or which may drive nonlinear changes. 

We exclude several parametric assumptions which have conceptually important policy implications but 

whose specific values have little impact on the rest of the model. For instance, the Tx seeking barrier loss 

fraction (𝐹𝐿) and its components are of great practical importance for increasing access to treatment, but 

changes in the assumed value of 𝐹𝐿 will simply result in a proportional change in the estimated value of 

the Tx seeking rate (𝜌𝑇(.)) with no further impact on the model (see S2.d.ii.(1)): 

rUT(.)
∗ = 𝜌𝑇(.)(1 − 𝐹

𝐿)U(.) (2.13) 

As such, we exclude it and other structurally similar parameters from the parametric sensitivity analysis. 

We report the impacts of parametric changes on  

1) Four main substantive outcomes: 

a. Estimated cumulative overdose deaths and cumulative person-years of use disorder from 

1999-2020 

b. Projected cumulative overdose deaths and cumulative person-years of use disorder from 

2020-2032, under ‘ETC’ case assumptions (see S6.c)) 

2) Median and maximum relative changes in estimated parameter values across all estimated 

parameters, excluding feedback strength parameters estimated at near-zero values (see below) 

3) Average and maximum MAEN of all estimated historical time series, to identify impacts on overall 

goodness-of-fit as well as any outsize impacts on particular time series (see S5.b)) 

We report the first two sets of these impacts (1) and (2) as elasticities, i.e., fractional changes in outcome 

measure divided by fractional change (±10%) in the input parametric assumption. This yields a 

dimensionless value with a useful heuristic interpretation – absolute values < 1 indicate modest sensitivity, 

whereas absolute values > 1 indicate greater sensitivity meriting closer inspection. 

Note that some feedback strengths (𝜀(.)) in the main model (see S2.c)) are estimated at near-zero values, 

which indicates that feedback has no significant effect (see S2.c.iv)). In these cases, re-estimation can yield 

seemingly large relative changes in 𝜀(.) which are actually insignificant in practice: 

(𝐷𝐶(.))
1𝐸−06

≈ (𝐷𝐶(.))
1𝐸−05

≈ (𝐷𝐶(.))
1𝐸−04

≈ 1 (6. 1) 

As such, in order to avoid skewing the reported elasticities of estimated parameters with apparent 

multiple-order-of-magnitude changes that are actually insignificant, we exclude from the average and 

maximum parameter elasticity calculation any parameters with baseline estimated value < 1E-04. This 

threshold restricts the exclusion to only feedback strength parameters 𝜀(.). 
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S6.a.i) Parametric sensitivity results 

Table S14 reports elasticities of major outcomes and parameter estimates to changes in parametric 

assumptions, as well as changes in model goodness-of-fit (MAEN). 

Overall model goodness-of-fit is virtually identical regardless of small changes in parametric assumptions. 

Similarly, overdose deaths and use disorder prevalence over the historical period of 1999-2020 are 

essentially unchanged. Taken together, these two results indicate the model is largely insensitive to 

precise values of parametric assumptions. Changes in those precise values can be easily accommodated 

with small changes in the values of estimated parameters, as indicated by the low median elasticity of 

parameter estimates. 

The absolute maximum elasticity across all estimated parameters is distinctly higher. Despite that, the 

elasticity of key projected outcomes from 2020-2032 remains generally low, with absolute magnitudes 

well below 1 in most cases. The absolute elasticities for projected outcomes are two orders of magnitude 

larger than those for historical outcomes, but this is to be expected – firstly, the projected values are not 

directly constrained by historical data, and secondly, projecting forward amplifies the effect of minor 

divergences in parameter estimates. 

Only in one case is there substantial sensitivity (elasticity ~1) to a parametric assumption – increasing the 

assumed duration of buprenorphine treatment results in an almost proportional increase in projected 

deaths. 

This result may seem counterintuitive, as increased duration (and hence efficacy) of treatment might be 

expected to result in fewer deaths. To understand this result, it is useful to think of model estimation as a 

balancing or goal-seeking process, with historical data as the goal. If we assume historically greater 

treatment efficacy, the estimation process compensates by estimating more severe rates of use disorder 

development, relapse, etc. to maintain historically observed levels of use disorder. Those more severe or 

stronger counterbalancing forces, projected out into the future, result in more deaths than in the base 

case. 

Notwithstanding that, on the whole, we find that SOURCE is largely insensitive to minor changes in 

parametric assumptions, which should help allay any concerns about any imprecision in the calculation of 

those values. 
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Table S14. Sensitivity of key outcomes to ±10% changes in parametric assumptions. Reported elasticities are averages of absolute value change with increase/decrease in 
parameter; polarity of change assumes 10% increase from assumed value. 

 

Cumulative 
overdose 
deaths 

Cumulative 
UD person-
years 

Projected 
cumulative 
overdose 
deaths 

Projected 
cumulative 
UD person-
years 

Med 
elasticity 

Max 
elasticity 

Avg 
MAEN 

Max 
MAEN 

ADF substitutability factor -0.009 -0.006 -0.004 -0.005 0.048 -2.569 0.127 0.266 

Effect of MOUD Tx on OD death rate[Bup] 0.001 -0.004 -0.034 0.008 0.032 -1.534 0.127 0.266 

Effect of MOUD Tx on OD death rate[MMT] -0.001 -0.001 -0.019 0.008 0.025 -1.988 0.127 0.266 

Effect of MOUD Tx on OD death rate[Viv] 0.001 -0.003 -0.014 0.016 0.067 -2.629 0.127 0.266 

OxyContin withdrawal magnitude -0.002 0.009 -0.016 -0.011 0.037 2.985 0.127 0.266 

Perceived risk decrease time -0.002 -0.006 -0.007 -0.006 0.041 -2.040 0.127 0.266 

Perceived risk increase time -0.003 0.009 0.014 0.005 0.031 -0.800 0.127 0.266 

Perceived risk weight NFOD -0.002 -0.004 -0.008 -0.015 0.045 -2.227 0.127 0.266 

Probability OD witnessed 0.002 -0.012 0.072 -0.027 0.040 -1.605 0.127 0.267 

Probability of calling emergency services -0.001 -0.002 -0.012 -0.008 0.035 2.159 0.127 0.266 

Remission rate HUD no MOUD Tx -0.002 -0.009 -0.090 -0.135 0.038 -2.207 0.127 0.266 

Rx demand HUD with Rx OUD or misuse -0.002 -0.004 0.013 0.033 0.020 -1.962 0.127 0.266 

Rx demand Rx OUD no H -0.001 -0.006 -0.010 0.023 0.025 -1.724 0.127 0.266 

Sensitivity of Rx supply to patients receiving 
prescription -0.002 -0.005 0.038 0.079 0.043 -2.294 0.127 0.266 

Sensitivity of Rx supply to Rx per person -0.001 -0.008 -0.018 -0.034 0.045 -1.952 0.127 0.266 

Sensitivity of Rx supply to days per prescription 0.002 -0.003 0.017 0.026 0.029 -2.203 0.127 0.266 

Sensitivity of Rx supply to MME per day -0.001 -0.003 -0.034 -0.096 0.047 -2.493 0.127 0.266 

Time to readjust Rx street supply -0.005 0.004 -0.009 0.007 0.049 2.436 0.127 0.266 

Tx average duration Bup 0.003 -0.002 -0.031 -0.050 0.048 -1.939 0.127 0.266 

Tx average duration MMT -0.001 -0.006 -0.005 0.013 0.045 2.157 0.127 0.266 

Tx average duration Viv 0.002 -0.007 -0.015 -0.008 0.031 -1.850 0.127 0.266 

Tx seeking fraction Bup HUD 0.000 -0.006 -0.010 -0.028 0.025 -1.887 0.127 0.266 

Tx seeking fraction Bup Rx OUD 0.003 0.003 -0.011 0.037 0.053 -1.791 0.127 0.266 

Tx seeking fraction MMT HUD relative -0.001 -0.009 0.010 0.007 0.052 -1.482 0.127 0.266 

Tx seeking fraction MMT Rx OUD relative -0.003 -0.003 -0.012 -0.002 0.025 -1.627 0.127 0.266 

Tx seeking rate HUD relative to Rx OUD no H -0.002 -0.001 -0.019 -0.020 0.056 1.941 0.127 0.266 

Tx success fraction inflection -0.002 -0.006 -0.035 -0.163 0.070 -3.156 0.127 0.266 
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S6.b) Feedback loop knockout analyses 

SOURCE’s feedback structure is central to its behaviour, projections, and insights about historical 

trajectories. With multiple feedbacks acting simultaneously, sometimes with similar results, it can be 

difficult to disambiguate the impacts of different feedback processes through model estimation alone; 

some form of loop dominance analysis is warranted (106). To assess the relative role of different 

feedbacks in SOURCE and build confidence in our estimates of their strengths, we conducted loop 

knockout analyses (21, 106), examining how model behaviour and estimates change in the absence of 

certain feedbacks. 

We test SOURCE’s feedbacks in three groups, corresponding to the three main conceptual sets of feedback 

processes – social influence, perceived risk, and availability (see S2.c)). We deactivate all loops in one 

group at a time. 

For each of these three sets of loops, we conduct two forms of loop knockout test: 1) running the model 

with baseline parameter estimates, with the focal loops deactivated; and 2) deactivating the focal loops 

and re-estimating the model in accordance with S4.c). The first test helps highlight the role played by the 

focal loops in the baseline model, while the second test highlights the ability of the other feedbacks in the 

model to compensate for the missing focal feedback, potentially acting as ‘shadow’ feedback structures 

(106). 

For each test, we report the changes in the outcomes outlined in S6.a) above: 1) substantive outcomes 

for 1999-2020 and 2020-2032; 2) changes in estimated parameter values, excluding near-zero values 

(note that for the first test described, parameter values will not change); and 3) MAEN across historical 

time series. Unlike in S6.a), as there is no meaningful input change against which to normalise an elasticity 

value, we report the first two sets of impacts as fractional changes rather than elasticities. 

S6.b.i) Loop knockout results 

Table S15 presents summary outcomes of loop knockout analyses, while Figure S20 shows model fit to 

data. 

In all three ‘deactivated’ tests, model fit worsened considerably and both historical and projected key 

outcomes changed substantially, indicating that all three loop sets play important roles in generating the 

model’s behaviour. These changes are greatest when perceived risk feedbacks are deactivated, consistent 

with recent heroin use data indicating a very strong risk response being vital in shaping the trajectory of 

the crisis (see S3.a.iv.(1)). Deactivating availability effects reduces both historical and projected deaths 

and use disorder, affirming the idea that the ready supply of both prescription opioids and heroin has 

been partly responsible for the scale of the crisis. Interestingly, deactivating social influence feedbacks 

has relatively little overall impact on cumulative deaths or use disorder, reflecting the fact (or more 

accurately, the structural assumption) that social influence goes both ways, and has contributed to both 

increases and decreases in drug use over the last ~20 years. 

As expected, model fit in the ‘recalibrated’ tests worsens compared to baseline (baseline average MAEN 

= 12.7%), but only slightly; it worsens slightly more for the perceived risk feedback knockout than the 

others. Similarly, most estimated parameters do not change very much. Together, these results indicate 

some ability of model feedbacks to compensate for each other, as discussed above. Closer examination 

of how exactly the feedbacks change, however, is instructive. 
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In particular, social influence and availability effects appear to operate similarly, and are able to 

compensate for each other to a large extent, albeit more so for social influence compensating for 

availability effects than vice-versa. Social influence feedbacks play a greater role in driving declines in both 

Rx and heroin initiation in the last few years and going forward. Overall, the similarity in effects of the two 

processes is not entirely surprising – in practice, access to drugs is not only a matter of aggregate forces 

of supply and demand but also ease of access within particular social networks (see S2.c.i)), e.g., whether 

you have a friend who knows a dealer. While we have operationalised our availability construct to reflect 

aggregate market forces, there likely remains some overlap between social influence and availability 

feedback processes. 

Consistent with the ‘deactivated’ tests, the perceived risk feedbacks seem to play the greatest role, with 

the other feedback processes less able to compensate for their absence. Without the risk response, rates 

of both Rx and heroin initiation are unable to decline as much or as quickly as observed in the data, 

supporting the potential importance of risk responses in producing the ‘wave’ pattern observed in past 

substance use crises. 

Interestingly, all three ‘recalibrated’ cases show increased projected deaths and use disorder, indicating 

that at this point, and over the next decade, all three sets of feedbacks are likely working in the direction 

of lessening the magnitude of the crisis. This observation provides some justification for the optimism of 

our base case projections (S5.c)), which show that the crisis, in terms of use disorder and mortality, 

appears to be on the verge of peaking and turning around. 
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Table S15. Sensitivity of key outcomes to loop knockout analyses. ‘Deactivated’ results are from model runs using baseline estimated values with the focal loop[s] subsequently 
deactivated; ‘Recalibrated’ results deactivate the focal loop[s] and re-estimate the model, using the re-estimated parameters for projections as well. 

 

Cumulative 
overdose 
deaths 

Cumulative 
UD person-
years 

Projected 
cumulative 
overdose 
deaths 

Projected 
cumulative 
UD person-
years Med elasticity Max elasticity Avg MAEN Max MAEN 

Deactivated 
Availability 

-0.251 -0.170 -0.401 -0.156 0 0 0.228 0.535 

Recalibrated w/o 
Availability 

-0.001 -0.003 0.062 0.143 0.045 2.6 0.140 0.329 

Deactivated 
Perceived risk 

1.121 0.269 3.081 0.919 0 0 1.972 12.376 

Recalibrated w/o 
Perceived risk 

-0.005 0.004 0.126 0.007 0.059 18.6 0.155 0.301 

Deactivated Social 
influence 

-0.139 -0.045 -0.320 -0.092 0 0 0.237 0.505 

Recalibrated w/o 
Social influence 

-0.004 -0.001 0.116 -0.034 0.072 2.5 0.136 0.294 
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Figure S20. Model fit to data for loop knockout analyses, for all time-series data used in estimation (simulated model output = blue, historical data = grey). Left panels show results 
of recalibration with loop knockout; right panels show impact of knockout with baseline parameter estimates. Focal loops deactivated, from top to bottom: availability effects, 
perceived risk, social influence. 
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S6.c) Sensitivity of projections to exogenous input assumptions 

SOURCE makes projections of potential future trajectories of the opioid crisis using some baseline 

assumptions about future trends in exogenous inputs 𝑥𝑗𝑡. By default, we include three main sets of 

baseline assumptions about SOURCE’s inputs (seeTable S13): an ‘exogenous trends continue’ (ETC) case 

where present trends continue at decelerating rates, stabilising at plausible levels by 2032, as well as 

‘optimistic’ and ‘pessimistic’ cases (see S5.c)). Alternative sets of baseline assumptions can be specified 

by model users. 

To quantify sensitivity to baseline assumptions, we also test a ‘constant’ case where exogenous inputs do 

not change after their last data points in 2020. Different baseline assumptions for inputs will obviously 

have substantial effects on parts of the model directly driven by those inputs. For instance, switching 

between ETC and ‘constant’ assumptions about future opioid prescribing trends results in large 

differences in prescription opioid supply. However, major downstream outcomes are not very sensitive 

to the baseline case used. Switching from ETC to ‘constant’ assumptions changes total use disorder 

prevalence (measured in cumulative person-years from 2020-2032) by 8.6%, and total cumulative 

overdose deaths by -7.1%. 

To assess the impacts of baseline assumptions about individual exogenous inputs on these downstream 

outcomes, we test each input variable j in two ways: 1) setting all input assumptions except j to their ETC 

trajectories but holding j constant after 2020; and 2) holding all input assumptions constant after 2020 

but setting j to its ETC trajectory. We then calculate the percentage change in key outcomes (cumulative 

overdose deaths and person-years of use disorder from 2020-2032) from the all-inputs ETC case and 

constant case, respectively, as well as the mean absolute percentage change for each input j and across 

all inputs. With the exception of fentanyl penetration in the illicit drug supply, these outcomes are not 

very sensitive to changes in input assumptions (see Table S16) – on average, switching each input between 

ETC and ‘constant’ assumptions individually results in changes of 0.0% and 0.0% in projected cumulative 

use disorder prevalence and overdose deaths respectively. 
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Table S16. Sensitivity of key projected outcomes to alternative base case assumptions 

 
Base Projected 
cumulative 
overdose deaths 

Base Projected 
cumulative UD 
person-years 

Constant Projected 
cumulative 
overdose deaths 

Constant Projected 
cumulative UD 
person-years 

Average Projected 
cumulative 
overdose deaths 

Average Projected 
cumulative UD 
person-years 

Fent -0.19706 0.015097 0.244989 -0.01589 -0.22102 0.015491 

NxKD 0.043895 -0.00319 -0.04074 0.002592 0.042316 -0.00289 

HPI 0.000369 6.01E-05 -0.00034 -6.80E-05 0.000354 6.40E-05 

BMDCap 0.001204 0.000282 -0.00139 -0.0004 0.001297 0.00034 

MMTCap 0.070109 0.013703 -0.06216 -0.01336 0.066132 0.013529 

VivCap 0.003535 0.00202 -0.00345 -0.00189 0.003493 0.001955 

PtRx 0.021198 0.030998 -0.02607 -0.03588 0.023633 0.033436 

RxPP 0.002668 0.00386 -0.00445 -0.00637 0.00356 0.005116 

RxDur -0.00436 -0.00604 0.00833 0.011625 -0.00635 -0.00883 

MME 0.009216 0.021112 -0.01383 -0.0273 0.011525 0.024204 

ADF -6.79E-05 -5.47E-06 6.14E-05 0 -6.46E-05 -2.73E-06 

MAC 0.032153 0.00876 0.036891 0.010487 0.034522 0.009623 
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For comparison, Figure S21 shows projections for all time-series data used in model estimation under 

constant-input assumptions (see Table S13) (see Table S8 in S4.b)). Two main sets of differences stand 

out. First, deaths fall more sharply than in the ETC case, as fentanyl prevalence does not continue to rise. 

Second, without continued declines in opioid prescribing, Rx opioid misuse, use disorder, and associated 

outcomes start to increase again within a few years, as the perceptions of risk associated with Rx misuse 

that drove its initial decline in the 2000s start to fade – highlighting the importance of continuing various 

ongoing efforts to reduce prescribing. 

 

Figure S21. Constant-assumptions case projections for all time-series data used in estimation. Shaded areas indicate 95% credible 
intervals, not accounting for measurement noise. 

 

S6.d) Sensitivity of parameter estimates to inclusion of 2020 data 

As a system dynamics model, SOURCE seeks to reflect the key structural relationships underlying the 

trajectory of the opioid crisis. Potentially relevant relationships that are not captured within the model, 

such as the dynamics of heroin and illicit fentanyl supply, are reflected instead in the model’s exogenous 

time-series inputs (see Table S8). 

The onset of the COVID-19 pandemic in early 2020 thus presents a challenge for the model estimation 

process. COVID-19 and the resultant socioeconomic impacts are the sort of true exogenous shock 

unforeseeable in most models. The pandemic has plausibly affected many aspects of the opioid crisis, 
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such as access to treatment and harm reduction services, risk of relapse to substance use disorder, and 

initiation or escalation of substance use. Insofar as these COVID-19 impacts are reflected in SOURCE’s 

exogenous inputs (e.g., reduced treatment capacity), the model should accurately account for their 

broader effects on the crisis. However, if those impacts are not reflected in exogenous inputs (e.g., 

heightened risk of relapse), the model does not structurally account for the resultant effects. 

Incorporating data from 2020 into the model estimation process thus risks confounding underlying 

structural relationships with the exogenous impacts of COVID-19, potentially biasing parameter estimates. 

One approach to addressing this confounding would be to estimate year fixed effects on initiation, 

relapse, etc. for 2020 (and any subsequent years under pandemic conditions). However, this approach 

would entail estimating several additional parameters based on, in most cases, a single data point for 

each. Instead, here we seek to quantify the magnitude of the confounding problem, in order to 

demonstrate that the model’s exogenous inputs already capture most of the impact of COVID-19 and the 

extent of remaining confounding is minimal. 

To test this, we estimate the model in accordance with S4.c) but using time-series input and calibration 

target data only through 2019, i.e., pre-pandemic. We then compare resultant parameter estimates and 

other outcomes as outlined in S6.a) and S6.b). 

Outcomes are reported in Table S17. In summary, very little changes; the median change in estimated 

parameter values is ~1%, and projected cumulative overdoses fall by only ~6%. The robustness of 

estimates and projections indicates that much of the exogenous impact of COVID-19 in 2020 is reflected 

well in the model’s exogenous inputs. While other impacts may have occurred that the model does not 

account for (e.g., increased relapse rates), those shocks have little effect on the model’s long-term 

behaviour. 

S7) Model Equations 

A full listing of model equations is available online at https://github.com/FDA/SOURCE. 

 

https://github.com/FDA/SOURCE
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Table S17. Sensitivity of key outcomes to exclusion of 2020 data 

 

Cumulative 
overdose 
deaths 

Cumulative 
UD person-
years 

Projected 
cumulative 
overdose 
deaths 

Projected 
cumulative 
UD person-
years 

Med 
elasticity 

Max 
elasticity 

Avg 
MAEN 

Max 
MAEN 

Excluding 2020 data -0.00788 0.006924 0.019055 0.102588 0.009327 0.500095 0.123994 0.251937 
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